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If people do not believe that mathematics is
simple, it is only because they do not realize
how complicated life is.

John von Neumann
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Preface

This book presents to researchers and graduate students mathematical models and
numerical simulations of crowd dynamics. The book is addressed to scholars and
professionals with different backgrounds, in particular applied mathematicians,
physicists, engineers, system biologists, and psychologists, who can, for various
reasons, be interested in mathematical modeling of crowd behavior and, more in
general, of granular flows in living and nonliving complex systems from a multiscale
point of view.

In a broader sense, this book is about the science of mathematical modeling, seen
in action under the particular perspective of pedestrian dynamics modeling. The
leading idea is that Applied Mathematics does not just consist in the application of
existing models to practical case studies but, first and foremost, in the construction
of original mathematical approaches motivated by often nonstandard problems con-
tinuously posed by the real world. In this respect, the cultural path followed in the
book encompasses rigorous procedures of mathematization of reality, analysis of the
mathematical structures thereby derived, and simulation of realistic scenarios which
can constitute a basis for a fruitful dialogue with non-mathematical practitioners.

Research about crowd dynamics is fostered by both theoretical and practical
reasons. On the one hand, many scholars want to understand the basic principles of
pedestrian motion. Their insights can often be translated into mathematical models,
which can be validated through simulations. On the other hand, practitioners are
interested in faithful simulations of self-organized phenomena arising in pedestrian
flows, especially in complex-shaped two-dimensional built environments. Indeed,
it is well known that neglecting group behaviors can lead to major safety issues.
Therefore, our interest is mainly focused on models which reproduce the sponta-
neously emerging self-organized collective patterns out of an accurate and realistic
design of individual interaction rules. Namely, without resorting to the artificial
inclusion of empirical features in the mathematical equations with the primary aim
of reproducing target phenomena. In this respect, we note that crowd dynamics are
often nicely visualized in computer graphics animations: Our approach is rather
different, since we aim at a deeper understanding, through mathematical models, of
the basic dynamical principles ruling crowd behaviors. To this goal, we consider two
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x Preface

points of view which have been classically taken in crowd dynamics modeling: The
microscopic one, in which pedestrians are tracked individually, and the macroscopic
one, in which pedestrians are assimilated to a continuum and observed through their
average density. We present in detail and critically analyze selected existing models.
Then, as a core topic, we develop a multiscale paradigm, which allows one to bridge
the various scales, taking the most from each of them in terms of capturing the
relevant clues of complexity of crowds. Our background idea is indeed that most of
the complex trends exhibited by crowds are due to an intrinsic interplay between
individual and collective behaviors, which are capable of affecting each other. The
modeling approach we promote in this book pursues actively this intuition and
profits from it for designing a general multiscale mathematical method susceptible
of application also in fields different from the inspiring original one.

The book is divided in two parts and eight chapters, plus two appendices.
The first part, mainly introductory, is dedicated to a broad audience. It features
virtual experiments pointing out, on the one hand, the phenomenology of pedestrian
behaviors we are interested in and, on the other hand, the ability of our multiscale
model to address such phenomena. The second part, characterized by a more
technical content, presents an overview of single-scale models and the details of
our multiscale approach, together with analytical and numerical results, plus its
generalization to different application fields.

The hallmarks of the present work, which make it different from other books on
the same topic available in the literature, can be summarized as follows:

• This book promotes a true interplay among modeling, theory, and numerics for
a cutting-edge multidisciplinary research topic. One of the leading principles is
that models should originate from a correct interplay between real world and
mathematics.

• This book offers an accurate review of models of crowd dynamics: Both seminal
and the most relevant descending works are presented with a sufficient detail to
allow readers to be quickly up-to-date with the state of the art in the field.

• This book focuses on a new multiscale description of crowd dynamics, based
on measure theory, which covers the full path of Applied Mathematics: Model
derivation, qualitative analysis, construction and analysis of numerical schemes,
and application of the algorithms to the simulation of more and less standard
benchmarks in pedestrian dynamics.

• Numerical tests highlight the effects of the interplay between small and large
scales on pedestrian dynamics, suggesting that crowd modeling requires defi-
nitely a multiscale approach, in which scales truly integrate and complement.

• This book provides a ready-to-implement pseudo-code version of the multiscale
algorithm.

Rome, Italy Emiliano Cristiani
Camden, New Jersey, USA Benedetto Piccoli
Rome, Italy Andrea Tosin
July 4, 2014
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Part I
Pedestrian Behavior: Phenomenology

and Simulations



Chapter 1
An Introduction to the Modeling of Crowd
Dynamics

Abstract In this chapter we begin the discussion about crowd dynamics from an
informal phenomenological point of view. In particular, we put in evidence how
simple interaction rules adopted independently by pedestrians generate, at a col-
lective level, complex group behaviors featuring various forms of self-organization.
Bearing in mind the ultimate goal of the book, which is mathematical modeling,
we promote the idea that understanding such basic behavioral rules contributes to
the modeling at all scales, also those not directly focused on single individuals. In
the light of these arguments, we critically analyze the main scales of observation
and representation which are typically used in mathematical modeling, namely the
microscopic, the macroscopic, and the mesoscopic (or kinetic) scale. For each of
them we discuss the advantages/drawbacks in catching/losing specific features of
crowd dynamics, with a view also to the interplay with the available experimental
knowledge about crowds. Finally we elucidate the role of the book in this cultural
framework and we give reading directions through the various chapters targeted to
a few different kinds of readerships.

1.1 Modeling-Oriented Phenomenological Issues

In this section we review the most important pedestrian behavioral rules which are
usually taken into account in crowd modeling. As a complement, we discuss the
concept of self-organization as a collective (and hardly predictable) result of those
behavioral rules.

1.1.1 Behavioral Rules

Modeling crowd dynamics requires to identify at least the most important behavioral
rules pedestrians are subject to. It is plain that a pedestrian, as a complex living
being, is basically unpredictable. Nevertheless, some guidelines can be drawn.
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DOI 10.1007/978-3-319-06620-2__1,
© Springer International Publishing Switzerland 2014

3



4 1 An Introduction to the Modeling of Crowd Dynamics

1.1.1.1 Target

In most of the cases, people move in a bounded space and have a desired destination
to be reached. This destination, together with the geometry of the space, defines
a desired velocity field which is exactly the velocity people would keep if they
were alone in the domain. The desired velocity can be very different whether
the pedestrian under observation knows the domain or moves in a unfamiliar
environment. In the latter case, an exploration phase has to be taken into account. In
the rest of the book, we will denote by˝ 2 R

d the walking area, � 2 ˝ the target,
and vd W ˝ ! R

d the desired velocity field, where d is the dimension of˝ , usually
d D 2.

The final velocity field pedestrians actually follow will be given by a suitable
combination of the desired velocity field and the interaction velocity field, defined
taking into account the following features of pedestrians.

1.1.1.2 Repulsion

People want to avoid collisions, so they stop when they are too close to other people.
Moreover, they have a tendency to avoid crowded regions, as well as to stay clear
of walls and obstacles. Often mathematical models take into account this behavior
by assuming the existence of a fictitious repulsive force which drives people toward
clear spaces.

1.1.1.3 Attraction

Sometimes people have the tendency to follow other people or simply stay in touch.
This is the case of social groups like friends, families, tourist groups, and so on.
For example, small groups of walking friends want to reach their destination all
together, while keeping eye-contact and speaking with each other. Instead, tourist
groups want primarily stay in touch with their guide (i.e. the sole person who knows
the destination) and then keeping the group itself cohesive.

1.1.1.4 Keeping Direction

People have the tendency to keep the same direction of motion, since changing
direction is tiresome and usually inefficient. This is one the reason which makes
walking through a crowd an annoying task.

1.1.1.5 Visual Field

People have a limited visual field. It is usually assumed to be an angle of 170ı or
180ı, where the central area is sharper than the lateral ones. The line which divides
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in two equal parts the visual field can coincide with the actual direction of motion or,
instead, with the desired direction of motion, and it is obviously related to the head
orientation. If, on the one hand, the assumption that people can see only in front
is reasonable, on the other hand it must be noted that people can turn their head,
thus perceiving almost all the space around, and that other senses than sight can be
involved, like, e.g., hearing and touch. Visual field is also limited by any obstruction
people can perceive, like walls, columns, and other pedestrians themselves.

1.1.1.6 Sensory Regions

In normal conditions, people do not interact with the others by contact, as mechan-
ical particles do. Rather, they observe the surrounding space and take decisions.
Sensory regions, which are in general different from the visual field, represent the
portion of the space effectively considered before taking a decision, and can be
different from need to need. For example, pedestrians are mainly repulsed by other
people walking both close and in front to them, or by people walking on a “collision
course”, while they are little or no repulsed by far-away pedestrians, even if they
are in the visual field. Then, repulsive sensory region is usually short-range and
anisotropic. Attraction, instead, can be much more extended in space, even up to the
whole visual field.

Sensory regions are one of the main ingredients of the mathematical models
and sometimes make the difference among them. Indeed, changing the shape of
the sensory regions defined for the various tasks leads to major differences in the
simulated pedestrian behavior.

In the rest of the book, we will denote a generic sensory region by S .x/, where
x is the position of the pedestrian under observation.

1.1.1.7 Metric vs Topological Sensory Regions

People have limited capabilities in processing information. They cannot perceive
(and then respond to) many stimuli at the same time. This means that concurrent
stimuli are processed one after the other, and complex situations are actually
“simplified”. In particular, people do not interact (by means of a repulsion force,
for example) with more than a few people contemporaneously. If a topological
definition of the sensory region S is applied, S is continuously enlarged or shrunk
in order to include exactly the number of pedestrians who can reasonably be taken
into account. This choice effectively models the limitations of the human brain in
terms of processing information. On the contrary, if a metric definition of S is
applied, the size of S is fixed once and for all, and the number of the observed
pedestrians can be either less or more than the possible one. The latter choice is
usually made for simplicity, but it can lead to unrealistic results, especially in case
of large crowds.
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1.1.1.8 Panic

In case of panic, some of the behavioral rules described above change or cease to
apply. The main difference with respect to the normal conditions is that interactions
become physical and people start pushing. This obviously change the shape of the
sensory regions. In addition, people move faster, change directions more often, are
attracted to people who have a clear direction (in the hope they have found a safe
way out), become more selfish stopping any kind of collaboration, and coordinated
movements are lost.

1.1.2 Self-Organization

We say that a crowd is “organized” when a leader (inside or outside of the crowd)
decides its spatial distribution in order to maximize some global utility. Instead, we
say that a crowd is “self-organized” when a coordinated spatial distribution arises
by simply applying some local behavioral rules or one-to-one interactions among
pedestrians. In the latter case, no one really decides the final shape of the crowd,
and the shape which is finally assumed does not necessarily maximize some global
utility. Nevertheless, it can happen that people take advantage of the organization
which is spontaneously created.

Self-organization in pedestrians shows some important differences with respect
to the same phenomenon observed in other biological systems, like animals or cells.
As an example, let us consider the well known self-organizing phenomenon of trail
formation in ants. In that case, the trail arises from two simple local rules followed
by the ants: First, if an ant has found some food and it is coming back to the nest,
then it drops on the ground a particular scent, which slowly evaporates. Second, if
an ant smells the scent, it follows the trace. These two rules do not require any direct
interaction among ants, and no long-range information about food location is spread
around the ant colony by an informed individual. It must be noted that ants are not
aware of forming or following a trail, which can be quite long if compared with the
ant size. Then, the overall organization is not perceived by the ants.

It is very difficult to find among humans a phenomenon which shows a perfect
analogy with the one mentioned above. Indeed, humans usually perceive and
understand the global phenomenon they are part of, even if they did not want
or was not able to forecast its emergence. Then, if a single pedestrian is not
comfortable with the self-organized phenomenon she is contributing to form, she
can rationally change the local rules which are the cause of that phenomenon. This
makes pedestrians able to control the overall system, at least partially.

Having this in mind, we list here some self-organized patterns which are observed
in crowds and often attempted to be reproduced by mathematical models, see
Figs. 1.1–1.3.



1.1 Modeling-Oriented Phenomenological Issues 7

Fig. 1.1 Intermittent flows. Photos taken on February 5, 2014 (Wednesday), lunch time, Sapienza
– University of Rome. The gate does not allow the passage of two pedestrians at the same time.
(a) The first group, marked with green arrows, has to wait for the passage of the second group,
marked by red arrows; (b) as soon as the first group passed through, the first group moves ahead
( c�Emiliano Cristiani)

Fig. 1.2 Arching. Photos taken on January 8, 2013 (Tuesday) in Tivoli (Rome), 8:00 a.m., train
station. As soon as the train reaches the station, people run toward the nearest door. They are aware
that last people in likely have to be standing for the entire 1-h journey because of lack of seats
( c�Emiliano Cristiani)

• Intermittent flows at shared bottleneck (Fig. 1.1). When two populations of
pedestrians walking in opposite directions have to share a bottleneck, a sort of
traffic light effect is observed: Some people of the first population passes the
bottleneck, then they stop to allow some people of the other population to pass,
and so on. The break of symmetry arises naturally, since there is no leader who
settles the flows.

• Arching at bottlenecks (Fig. 1.2). When a large number of people has to pass
quickly through a bottleneck (a small door, for example), the formation of a
semi-circular arc just before the bottleneck is observed. In particular, people do
not queue neatly one after the other. This arching effect can actually drop the
efficiency of the overall dynamics.

• Lane formation in crossing flows (Fig. 1.3c). Two populations of pedestrians
which walk in opposite directions self-organize in lanes. The space is divided
in stripes, each of which is occupied by pedestrians moving in one direction
only. This way diminishes the probability of encounters among pedestrian having
opposite directions, thus improving the overall efficiency of both flows.
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Fig. 1.3 (a) V-like pattern. Photo taken on November 14, 2013 (Thursday), University of Rome
“Tor Vergata”. Three post-docs come back to their office after lunch; (b) teen wall. Photo taken on
November 9, 2013 (Saturday) in Tivoli (Rome), 6 p.m., main shopping street; (c) lanes in crossing
flows. Photo taken on February 5, 2014 (Wednesday), lunch time, Sapienza – University of Rome.
Note that the crosswalk is partially obstructed by improperly parked cars, and the pedestrian traffic
light is red (!). Forming lanes is the only way for pedestrians to cross the street sufficiently fast
( c�Emiliano Cristiani)

• V-like (Fig. 1.3a). Small social groups of walking friends or family members
often assume a configuration which resembles a V, where the vertex is pointing
against the direction of motion. This terminology comes from the biological
literature, in particular that regarding migrating geese which show a V-like
configuration where the vertex is directed toward the flying direction. By means
of the V-like configuration each pedestrian finds a comfortable walking position
supporting visual and verbal communication with the other group members.
When the group has more than four members, it often split up in smaller groups.

• River-like and wall-like configuration (Fig. 1.3b). In social groups, V’s are a
good compromise between a short-range repulsion (to avoid collisions) and
attraction (to stay together and communicate). When the surrounding crowd
density reaches high levels, physical constraints prevail over social preferences
and communications stop. People then start walking one behind the another,
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forming a river-like pattern. An interesting exception is represented by groups
of (hand-holding) teenagers. They are less susceptible to physical constraints
and more interested in communicating and being noticed. Then, they can form
outright moving walls orthogonal to the direction of motion, forcing the others
to slow down and circumvent them.

In Sect. 3.2.3 we will come back on self-organization issues with a more detailed
discussion which follows some psychological considerations about pedestrians as
individuals.

1.2 Preliminary Reasonings on Mathematical Modeling

1.2.1 Crowds as a Living Complex System

When attempting to describe new real world systems by mathematical equations
one is normally faced with two possible approaches. The first one can be called the
approach by analogy. One tries to figure out whether a more familiar system exists,
which has already been successfully modeled, showing qualitatively comparable
trends to those observed in the new system. Then one uses the models set up for
the familiar system as a starting point for the mathematization of the new one. The
second approach is instead based on the idea that the novelty itself of the new system
should induce a mathematization ab initio, i.e., from very basic first principles.

The validity of either approach depends strongly on the peculiarities of the
new system at hand. If there are reasons to suspect that the way in which it
works is phenomenologically different from other better known systems then the
first approach should be rejected in favor of the second one, despite the possible
similarity of the observable behaviors. In fact, mathematical models should not limit
themselves to reproducing observable behaviors. They should mainly identify the
underlying less visible causes leading to such behaviors, so as to provide an essential
explanation of the basic mechanisms ruling the system. Indeed, it is on this basis
that reliable simulations and predictions can be grounded, also in scenarios not yet
empirically tested. On the other hand, if the new system is clearly structurally similar
to another one then the second approach should be rejected in favor of the first one,
because it runs the risk of being uselessly time-consuming. In fact, there is no need
for rediscovering from the beginning well consolidated mathematical structures.
However, in both cases a preliminary careful analysis of the distinguishing features
of the new system is the essential first step.

Human crowds can be classified, with good reasons, among the new systems
which mathematics has started to deal with in relatively recent times. At the
beginning, the main modeling approach was by analogy with particle systems
of gas dynamics. Pedestrian dynamics were assimilated to those of gas particles
described as a continuum flowing in space, the inspiration being drawn mainly
from the similarity of the observed qualitative flow patterns in the two cases. Some
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authors also borrowed a terminology proper of fluid dynamics, using expressions
such as laminar and turbulent flow, for describing different regimes of crowd
movement. However, more recently the idea of crowds as a living complex system
has begun to impose itself, suggesting that an approach ab initio may be preferable
for constructing more targeted mathematical models.

To say that crowds are a complex system means basically that one cannot expect
to predict the behavior of many pedestrians from the detailed knowledge of the
behavior of one pedestrian (as it happens instead for e.g., fluid particles). Indeed
individual pedestrians modify continuously their local walking program due to
interactions with neighboring people. This way they generate spontaneous collective
trends not directly contained in the simple behavioral rules followed by each of
them. It is as if repeated mutual interactions “amplified” the effect of the individual
behavioral rules in a hardly controllable way. Even more important, all of this is
made possible largely by the fact that crowds are living systems, i.e., they are not
passively subject to the inertia law like the inert matter (e.g., again fluid particles).
Actually, this does not mean that pedestrians elude the usual laws of Physics. Rather,
they are able to influence the latter actively through personal decisions, whose
impact is not necessarily assimilable to that of external force fields.

In view of the reasonings just proposed, it is of some importance to discuss a few
basic complexity clues of crowds that mathematical models should cope with. In
order for model to comply with them as much as possible, it can be guessed that
methods traditionally used for describing the inert matter have to evolve, as already
implied, in new mathematical ideas.

1.2.1.1 Interactions and Multiscale Effects

Interactions among pedestrians pertain specifically to the scale of single individ-
uals. Indeed, they are usually one-to-one, or at most one-to-few, as they involve
immediate neighbors. On the other hand, the probably most striking effect of such
interactions is the spontaneous emergence of self-organized collective flow patterns,
clearly visible at a group level. This kind of influence of smaller on larger scales can
be viewed as an individuality-to-collectivity scaling. Nevertheless, also the opposite
influence is possible, namely the local collective state of the crowd (e.g., the local
crowding of an area) can modify the individual interaction rules. Mathematical
models should provide a way to link the individual point of view, which generates
the dynamics, to a large-scale collective representation not necessarily focused on
single pedestrians.

1.2.1.2 Perception Ability and Expression of Behavioral Strategies

Pedestrians react to the neighboring crowd according to the perception they have of
it. This is a subjective ability, which corresponds to the expression of a behavioral
strategy. For instance, depending on the state of the surrounding environment
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(including, but possibly not limited to, the number and localization of other nearby
people) and on the travel purpose (leisure, commuters, rush hours, : : :), they can feel
themselves facing either well-focused individualities or more blurred “packages”
of walkers. Consequently, even if the elementary interaction rules are always the
same, their global effect can be extremely different because of the filtering operated
by pedestrian psychological perception. It is worth pointing out that the latter is
an active ability of pedestrians as living agents, which can greatly impact on the
effect of basic physical laws. From a complementary point of view, perception
is the psychological consequence of the physical fact that crowds are extremely
granular systems, i.e., systems in which the real dynamics originate at the level of
single individuals. Mathematical models should explain how perception influences
the usual dynamical laws and contributes to originate different observable outcomes.

1.2.1.3 Large Deviations, Loss of Determinism, and Panic Onset

The expression of the aforesaid behavioral strategies, as well as their impact on
standard laws of Physics, can be considered under either a deterministic or a
stochastic point of view. The former is appropriate in normal conditions, i.e., when
a standard rational attitude can be identified over which large deviations are not
expected to occur. Conversely, the latter is suited for addressing cases in which
irrational behaviors cannot be excluded, which might induce large deviations over
the normal trends even up to panic onset. Mathematical models should account, at
least at a qualitative level, for the transition from normal to panic conditions, namely
explain how it can be triggered and how normal behavioral rules are modified in
extremely critical situations. However, we anticipate that in this book we will be
concerned only with crowd dynamics in normal conditions, so that an essentially
deterministic approach is admissible.

At last, it is worth mentioning that models conceived for treating complex
systems should deal with the above, and possibly also other, complexity clues within
the standards of the mathematical reductionism. That is, the modeled system should
not be as complex as the real one, for otherwise models are mostly ineffective for
practical purposes. Therefore, a balance has to be sought between following the
aforesaid guidelines and envisaging suitable strategies of complexity reduction by
means of proper mathematical structures.

1.2.2 Scaling and Representation

The first step of the modeling approach is the choice of the most appropriate scale for
describing, by mathematical equations, the system at hand. This book is concerned
with crowds as ensembles of interacting individuals, who, as discussed above,
generate complex dynamics involving various scales. Therefore, its background idea
is that the modeling approach should necessarily pursue a multiscale perspective.
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However, various models exist in the literature which adopt a single-scale viewpoint.
Hence it is important to explore the main characteristics of each modeling scale, also
for a preliminary assessment of their possible links.

Traditionally, three types of mathematical descriptions are considered, corre-
sponding to as many observation and representation scales.

1.2.2.1 Microscopic Scale

The microscopic scale is the one at which the minimal entities composing a system,
henceforth called particles for brevity, are visible. Here the adjective “minimal”
stands for “atomic”. That is, particles are regarded as the very fundamental
constituents, further levels of detail being unnecessary for explaining the genesis
of the dynamics exhibited by the system. In crowd dynamics, the microscopic
scale corresponds to the level of single pedestrians, who can indeed be regarded
as the atoms of a crowd. Mathematical models at the microscopic scale describe
the movement of each single walker by means of proper state variables, normally
position and velocity (at least in purely mechanical contexts). Since pedestrians
are tracked one by one from their initial positions, this kind of description is also
called Lagrangian (although such a terminology has no direct connection with the
modeling scale).

Depending on the reference mathematical framework, microscopic models can
be formalized in a few different ways. For instance, differential models use systems
of ordinary differential equations which express the variation in time of the state
variables attached to each pedestrian (much as in Rational Mechanics). On the other
hand, agent-based models, such as e.g., Cellular Automata, update the microscopic
states of pedestrians at discrete times according to mainly algorithmic evolution
rules.

1.2.2.2 Macroscopic Scale

As the name itself suggests, the macroscopic scale is just the opposite of the
microscopic one. The focus is no longer on single particles, viz. pedestrians, but
rather on their average distribution, which is described by means of a density in
space, usually denoted by �, evolving in time. An immediate technical difference
with the microscopic scale is that now space is, together with time, an independent
variable. Indeed, one is not labeling anymore pedestrians one by one in order to
track them along their paths. Rather, the space variable refers to arbitrary positions
in the geometric space possibly crossed by different walkers at different times. This
viewpoint is also called Eulerian as opposed to the Lagrangian one characteristic of
the microscopic scale.

Ideally, the macroscopic picture is what is seen by a sufficiently far observer,
who cannot distinguish individual pedestrians but detects just their collective mass.
In order for this point of view to make sense, it is conceptually necessary that the
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total number of pedestrians be so large that in every arbitrarily small portion of space
there is still enough of them for a density to be defined. Indeed, � is technically the
limit of the ratio between the number of people contained in a reference volume
centered at a point x and the volume itself shrinking to zero:

�.x/ D lim
volume!0

number of people in volume.x/

volume.x/
:

This assumption is normally referred to as the continuity of the matter. It is plain that
real crowds do not satisfy it so well as e.g., fluids do. However, it can be accepted
as a mathematical abstraction which possibly provides useful approximations of the
physical reality.

Models at the macroscopic scale focus on the evolution of the density and other
average quantities, such as e.g., the average velocity of “packages” of pedestrians,
which usually compare quite well with the available type of empirical information.
They are generally formulated in terms of (systems of) partial differential equations
using time and space as independent variables.

1.2.2.3 Mesoscopic Scale

The mesoscopic (or kinetic) scale is more properly a scale of representation rather
than of description. Indeed, it is based on the concept of statistical distribution of
the states of the microscopic particles, viz. pedestrians, which is a quantity less
tangible than the physical positions, velocities, and density typical of the other
two scales presented above. In practice, in the mesoscopic approach the point of
view on the physical system is intrinsically microscopic. Nevertheless, instead of
labeling and tracking pedestrians one looks at the statistical distribution of the
microscopic variables chosen to represent their state. Such a distribution is described
by a distribution function, usually denoted by f . For instance, if the pedestrian
microstate is constituted by the pair position-velocity, say in symbols .x; v/, then
f is a function of these two variables plus time t : f D f .t; x; v/. Specifically,
f .t; x; v/ dx dv is the (infinitesimal) number of pedestrians that at time t are
located in the reference volume dx centered at x with a velocity comprised in the
reference volume dv centered at v. Models are then constructed by reinterpreting the
physical laws responsible for microscopic dynamics in a probabilistic perspective,
suitable to describe the causes that make the distribution function change in time.

The origins of the mesoscopic approach to the modeling of real world systems
go back to the late 1800 with the kinetic theory of gases by Ludwig Boltzmann. In
more recent times, this approach started to be used also in quite different contexts, to
some extent closer to the contents of this book, such as e.g., modeling of vehicular
traffic and, even more recently, of swarm dynamics. The conceptual advantage of
this approach over the twos previously discussed is twofold. On the one hand, it
allows one to still look at the physical system from a microscopic point of view,
which is typically the most natural one for systems composed of several interacting
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elements. On the other hand, it does not require that every single pedestrian be
modeled. However, it does not provide directly average macroscopic quantities as a
result of the equations. They need to be extracted a posteriori as suitable statistics
from the distribution function once the latter is known.

1.2.3 Critical Analysis

By comparing the discussions set forth in Sects. 1.2.1 and 1.2.2 it should be
rather obvious that none of the usual scales addresses satisfactorily the complexity
clues raised by crowds. In order to argue this criticism, we start from the basic
consideration that a crowd is definitely a discrete system, say with a finite –
though possibly quite large – number of particles. Hence the microscopic scale
might seem the most appropriate modeling framework. However, large systems of
equations induce typically nontrivial analytic and computational difficulties, which
ultimately make the microscopic approach practically feasible only for relatively
small numbers of pedestrians. Even more important, a small scale description can
suffer from a large number of parameters, many of which are typically difficult to
be estimated. Furthermore, it may hardly allow one to catch robustly the formation
of collective self-organized patterns, because it is in general prone to fluctuations
(e.g., in the initial or boundary data, which, as a matter of fact, are not known with
deterministic precision). Finally, it does not provide a direct comparison with real
world in terms of macroscopic measurements (such as e.g., of density, fluxes, : : :),
which often are the actually useful information for practical purposes. A posteriori
averages in time or space can be computed but fluctuations cannot be avoided. On
the other hand, neither the macroscopic scale is fully appropriate, because crowds
do not fit the paradigms of continuity of the matter. Their discreteness makes it
necessary to derive the main dynamics from individual-based considerations, which
however are left out of macroscopic reasonings. In fact the latter normally resort to
the idea that the behavior of groups of particles, regarded as elementary constitutive
entities of the system, confined in arbitrarily small space volumes is sufficient to
determine the behavior of the whole system. Therefore the modeling approach
takes advantage of constitutive relationships instead of arriving at the detail of
single particles. This is however in contradiction with the importance of granularity
and perception in crowds. For instance, it makes it difficult to account for small
inhomogeneities in the flow, which are mostly responsible for the spontaneous
symmetry breaking triggering the formation of complicated self-organized patterns.
Finally, the mesoscopic approach as it can be borrowed from standard gas dynamics
is equally inappropriate to the representation of crowds, because the way in
which it reinterprets probabilistically the microscopic dynamical laws assumes
implicitly that the number of microscopic particles is so large that some heuristic
approximations needed to close the equations are valid. In more detail, the main
point is that any two particles of the system be sufficiently uncorrelated so that they
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can be regarded as statistically independent. This can be a reasonable approximation
for gas molecules subject to collisional dynamics, also in view of the high order of
magnitude of the Avogadro number (�6 � 1023 molecules per mole of gas), but it is
clearly questionable for pedestrians in a crowd, who do not even interact through
collisions.

In order to identify new modeling approaches, capable of profiting from the
advantages and going beyond the limits of the classical ones, one can start from
the consideration that in case of crowds the really useful quantitative information a
model should provide is definitely the one concerning the collectivity. In fact, on the
one hand it is less prone to globally unnecessary details; On the other hand it refers
to quantities directly observable, which depict well the emergence of group behav-
iors and trends. However, this information should originate from the distinguishing
features of individual pedestrians suitably translated into mathematical equations,
according to the idea that one-to-one interactions generate spontaneously collective
dynamics. In particular, the equations should account for the way in which indi-
viduals perceive the collectivity, which can greatly impact on the emergent group
behaviors but, being a psychological ability of each walker, is better modeled at
the level of single particles. This requires to identify proper mathematical structures
by means of which the key concepts of individuality, collectivity, and perceived
collectivity can be formalized. It is rather intuitive that such mathematical structures
have to pertain to different observation and representation scales. Therefore the
subsequent step is the elaboration of possibly nonstandard mathematical methods
for linking them in an embedded multiscale perspective, that is one which makes
possible the simultaneous presence and interplay of all levels of description.

1.3 The Interplay Between Modeling and Experimenting

It is a quite natural fact that Applied Mathematics be confronted with empirical
investigations. Empirical data should serve for validating mathematical models, i.e.,
assessing the reliability of their predictions in some test cases, and for identifying
their parameters. On the other hand, empirical data should not be artificially plugged
into models for reproducing observed qualitative trends, because the latter should
rather result from a correct interpretation of the inner system dynamics. Indeed,
this is the correct use of a mathematical model as a tool for explaining essential,
possibly non-evident, cause-effect links; Whereas the artificial insertion of data
makes mathematical models simply a restatement of the original problem carrying
almost no additional information. Concerning crowds, several types of data can
be obtained from experiments. Some of them are similar to those measured for
vehicular traffic while other are substantially different. We attempt now a rough
classification and discuss their possible technical use in the modeling approach in
view of an improvement of the quality of models.
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1.3.1 Fundamental Diagrams

Fundamental diagrams are graphs plotting the average speed or flux (i.e., the
product of speed and density) of pedestrians versus their density in uniform steady
flow conditions. They are very much analogous to the fundamental diagrams
used for vehicular traffic but for the fact that in case of crowds their shape can
be considerably influenced by environmental conditions, which walkers are more
sensitive to than cars. It has also been observed that flux diagrams of crowds may
have two peak values, rather than just one like in vehicular traffic, the second at
high pedestrian density being due to that walkers can still move even when they feel
overcompressed. Information provided by such diagrams is mainly limited to one-
directional flows, even when it is obtained from two-dimensional measurements. In
particular, these data do not allow one to understand how pedestrians deviate from
straight lines when looking for preferential paths.

1.3.2 Data on Emerging Collective Behaviors

Collective crowd behaviors emerge spontaneously mainly in the form of self-
organized flow patterns (such as e.g., crowding at exits or obstacles, lane formation
in counter-flows, traffic-light effect at bottlenecks). Data referred to such patterns do
not provide information about the behaviors of single agents. Rather they describe
their visible ensemble effect. It is worth stressing that emerging collective trends
can be greatly different and much more complex than the behavioral rules followed
by single individuals, due to the amplification produced by interactions and to
the switch of point of view (from the inner one of individuals immersed in the
crowd to the outer one on the collectivity as a whole). For this reason, these data
are usually extremely sensitive to environmental conditions: Small variations in
the arrangement of the walking area can induce large deviations on the observed
collective patterns. As a partly counterintuitive example, it is known that placing a
small obstacle in front of an exit can improve, under particular circumstances, the
outflow of people by reducing the average egress time. In pedestrian traffic literature,
this effect is known as the Braess’ paradox.

1.3.3 Data on Individual Behaviors and on Interactions

These data are aimed at understanding how pedestrians individually react to other
pedestrians and how such interactions determine the main dynamics. An example is
the analysis of the spatial correlation among pedestrian speeds, which can provide
information on the existence of a distance threshold, either metric or topological,
beyond which group mates do not interfere with the individual walking choices.



1.4 Book Contribution 17

This kind of empirical data can contribute to modeling at all scales, considering that
interactions are at the core of the derivation of models not only at the microscopic
scale. Indeed, models at the mesoscopic scale resort to a probabilistic interpretation
of the physical laws governing the microscopic dynamics. Furthermore, clues about
the physics of interactions are at the basis of modeling material behaviors, which
characterize models at the macroscopic scale. Finally, it is evident that data on
individual behaviors are mostly welcome in a multiscale perspective, too, for they
can help ground the mathematical derivation of models at higher scales on sound
phenomenological microscopic bases.

In general, the use of a specific type of empirical data in the modeling approach
should be referred to a well-defined modeling scale. Even more, the available
experimental information can influence in turn the assessment of the modeling scale,
because validation and parameter estimation are impossible if models do not meet
the scale of the data actually accessible. Nevertheless, we stress once again that
models should reproduce empirical data used for their validation (fundamental dia-
grams, dependence on the environmental conditions, self-organized flow patterns)
rather than being constructed on them. The latter practice amounts to modeling the
effects rather than the causes, which cannot be the ultimate goal of mathematical
modeling.

On the other hand, the discussion above has highlighted that a deep understanding
of microscopic interactions is crucial for grounding models on the actual physics of
crowds, including especially the complexity clues outlined in Sect. 1.2.1. Therefore,
an effort has to be put in setting up experiments which shed light on qualitative and
quantitative aspects of pedestrian behavior at an individual-based level. In doing
this, pedestrian psychology cannot be ignored. Experiments cannot be conducted
like with the inert matter, because human behavior cannot be exactly reproduced
at one’s pleasure. It might be biased if people know that they are being tested: For
instance, human choice ability may be altered if people move in fake environments
specifically conceived for recreating particular paths. Intuitively, this caveat applies
even more so when pretending to simulate critical conditions, such as e.g., a panicky
crowd, since simulated panic is probably very different from the actual one. Due to
their relevance in the understanding of crowd dynamics, insights into pedestrian
psychology will be examined in more detail in the dedicated Chap. 3.

1.4 Book Contribution

1.4.1 A Multiscale Approach

This book is about the science of mathematical modeling. Its leading idea is that
Applied Mathematics does not just consist in applying existing models but, first and
foremost, in constructing new mathematical methods for applied sciences through
a rigorous, and by far not obvious, process of mathematization of the reality.
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Specifically, the book is motivated by the search for a mathematical approach
capable of coping with the multiscale issues of crowd dynamics modeling. The
starting points are mainly the first two complexity clues discussed in Sect. 1.2.1,
which have both to do with the interplay between different scales:

• The scale of the individualities, which reflects the inner point of view of single
pedestrians within the crowd. This can be identified with the microscopic scale
of the system. It is at this scale that interaction dynamics have to be modeled
by implementing through mathematical equations the essential behavioral rules
discussed in Sect. 1.1.1.

• The scale of the collectivity, which corresponds to an outer point of view on the
crowd, i.e., one of an ideal observer who can access the crowd at once as a group.
This can be identified with the macroscopic scale of the system. It is at this scale
that emergent self-organized trends can be sought, to be possibly compared with
those known from empirical observations.

• The scale of the perceived collectivity, which serves as a bridge between the
previous twos. It can be identified with the mesoscopic scale of the system. It is at
this scale that individual perception enters the modeling approach as a behavioral
characteristic which impacts on the way individuals relate to the collectivity.

The basic phenomenological idea of our approach is that microscopic pedestrians
interact with the mesoscale of the surrounding collectivity, according to the
bidirectional scaling between individuality and collectivity discussed in Sect. 1.2.1.
In particular, collectivity is mathematically expressed by a probability measure over
the distribution of the microscopic positions of pedestrians, which generalizes the
concept of distribution function normally used in the kinetic approach. A measure is
useful for handling various space structures of such a distribution, whereby we can
translate different levels of perception of the individuals:

• An atomic mesoscopic distribution, viz. a Dirac delta-like probability measure,
models a highly granular perception, corresponding to the ability of pedestrians
to interact with other walkers one by one. This can happen in sparse crowds or
for leisure-type travel purposes.

• An absolutely continuous mesoscopic distribution, viz. a probability measure
with density (with respect to the usual Lebesgue measure in space), models a
bulky, or blurred, perception, corresponding to the tendency of pedestrians to
interact with surrounding subgroups of people as a whole. This can happen in
dense crowds or for rush-hour-type travel purposes.

In addition, properly weighted intermediate levels of perception are possible, since
a measure can include both an atomic and an absolutely continuous part at the same
time.

It is worth pointing out that we do not see the mesoscale as a limit-like
statistical description of the microscale when the number of microscopic particles
is “sufficiently” high. Our mesoscale amounts rather to a representation of the
particle dynamics in terms of transport of their probability distribution. As such,
it is well defined for both large and small numbers of particles, the specific structure
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of the probability distribution being dictated by the modeled perception level. By
simple statistical arguments it is then possible to link the mesoscopic probability
distribution to the macroscopic mass of the crowd, which is in turn represented by
a finite measure (though in general not a probability) with the same space structure
as the probability.

The possibility to hybridize the structure of the aforesaid measures is actually
the crucial point of our approach. It makes it possible to embed discrete pointwise
effects, which can be relevant for the emergence of particular self-organized
patterns, in a continuous representation of the crowd. This is done via a dedicated
parameter � , which can be chosen between 0 and 1 in order to fix the relative
importance of the discrete and continuous contributions in the structure of the
measures. This way, the discrete and continuous representations coexist in our model
and share information dynamically. In this respect, they are indivisible.

This makes the difference from other ways of understanding multiscale
approaches in the literature. Just to mention a few examples, we recall here:
� Multiscale geometric techniques, sometimes used to represent geometrically
complex systems such as e.g., those with a network structure. One specific part
of the network is accurately modeled in three dimensions, whereas the rest is
described by means of lumped zero-dimensional models. This enables one to
account for the whole network while keeping the complexity of the model under
control. � Multiscale methods implemented at a numerical level in connection
with domain decomposition, in order to compute the solution to certain equations
with different local accuracy. The general idea is to couple accurate but expensive
calculations, performed by a microscopic (e.g., particle-based) solver in small and
inhomogeneous regions, with less accurate but also less expensive ones, performed
by a macroscopic (e.g., continuum) solver in large and homogeneous regions. The
two solvers exchange information at the interface of the respective regions, which
may be a fictitious internal boundary to be carefully described and numerically
resolved. � Scale alternation for computing on the same system. In the resulting
iterative algorithm the output of the microscopic simulation is used as input for
the macroscopic simulation and vice versa. � Upscaling procedures, where the
ultimate goal is to pass from a detailed but often inhomogeneous description of
some quantities to a rougher but more homogeneous representation by averaging
out inhomogeneities via homogenization techniques. �Micro-macro decomposition
of the distribution function in the kinetic approach, used to obtain hybrid models
together with related numerical schemes. In particular, the latter combine a fluid-
dynamic solver in the whole domain with local kinetic corrections, which activate
according to some transition conditions when the macroscopic description breaks
down.

In our multiscale model, the probability (or mass) measure is finally the quantity
which provides information about emergent collective behaviors. In order to com-
pute it also at a practical level we build an ad hoc numerical scheme for producing
simulations in a measure-valued framework. Finally, we provide a basic theory
of well-posedness of initial-value problems and of convergence of the numerical
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scheme. From such a qualitative analysis we extract a few guidelines, which can
assist the construction of physically consistent and mathematically robust models.

1.4.2 Generalizations and Applications to Other Fields

The basic multiscale approach just outlined can be technically evolved in various
ways. The inspiring application may or may not always be crowd dynamics. In fact,
once the measure-based model has been obtained, one can imagine also different
uses of it aside from the motivations which led initially to its derivation. Specifically,
the multi-faceted structure of a measure can be regarded, more in general, as a
way of realizing a coupling between a discrete and a continuous description of a
given particle system in which the intrinsic granularity, together with a locally finite
and small number of particles, is expected to play a role in the resulting dynamics.
Hence our measure-valued equations can constitute a technical paradigm for further
interpretations of the multiscale approach to the modeling of interacting particles
possibly different from pedestrians. Some prospective ideas, only partly developed
in this book and to be possibly inserted in specific research programs, are outline in
what follows:

• The extension of the crowd model to several interacting groups of pedestrians
animated by different travel purposes. This simple improvement makes it
possible to address a great variety of important case studies. We mention here, in
particular, pedestrian counter-flows in straight corridors or through bottlenecks,
where the multiscale model shows how important the level of perception itself
can be for explaining the emergence of quite different self-organized collective
behaviors out of the very same starting conditions. Other interesting applications
concern the interaction of many with few individuals, when the latter are the only
ones who know the way to go. Prototypical situations are e.g., a group of tourists
following a guide or a group of people evacuating a room under the directions of
a rescue team.

• A more detailed description of micro-meso interactions including the ability of
pedestrians to adapt their behavioral strategy to the perceived distribution of
both positions and velocity of the surrounding walkers. This implies conceiving
phenomenological models based on second order dynamics, which use the pair
position-velocity as descriptor of the microscopic state of pedestrians. Conse-
quently, also the mesoscopic probability distribution is defined over a larger state
space, typically a four-dimensional one (two components for the position and
two for the velocity in case of crowds moving in two-dimensional domains). At
that point, nontrivial computational difficulties arise in the numerical solution of
the equations, which further motivate the search for mathematical structures at
higher scales capable of reducing such a technical complexity.

• The application of the approach to vehicular traffic. Vehicular traffic used to
be, and to some extent still is, a favorite reference background for modeling
pedestrian traffic. In fact, it is an example of a system in which apparently
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mechanical large-scale dynamics of inert matter (i.e., cars) are actually ruled by
non-mechanical behavioral strategies of living matter (i.e., drivers) at smaller
scales. Hence a multiscale model grounded on the idea of driver perception
seems to be appropriate also in this case. In particular, the modeling method
itself can profit from some specific features of the flow of cars, which can inspire
interesting extensions.

For instance, the discrete and continuous descriptions need not refer to the
same space dimension. Indeed, roads are essentially one-dimensional domains
with respect to the main flow dynamics, especially if the latter are considered
at a continuous level. Then a representation by means of one-dimensional
longitudinal density waves can be sufficient. However, the number of cars along
a road is locally sufficiently small for their granularity to have presumably
an important impact on the flow. Therefore, a dynamically coupled discrete-
continuous description is worth being considered, but the discrete part cannot
ignore the two-dimensional nature of the road. Notice that such a multidimen-
sional multiscale coupling can be viewed as the effect of the perception of
drivers. When they look bulkily at cars ahead continuous effects of the one-
dimensional stream dominate. On the other hand, when they follow the leaders
ahead two-dimensional discrete effects, such as lane changes or overtaking,
become important in assessing their behavioral strategy.

Another quite natural idea is that the discrete-continuous coupling varies in
different sub-domains or can be triggered by the evolution in time of the state of
the system itself. This amounts to converting the parameter � mentioned in the
previous section into a function of space and time, which can be either prescribed
a priori or linked to the dynamics of the main system by means of proper
constitutive relationships or evolution equations. For instance, one can guess
that a continuous description is satisfactory along a one-way road, due to the
essentially one-dimensional geometric constraint, whereas a discrete description
is necessary at crossroads, where driver perception is sharpened by vehicles
coming from different merging directions. As a matter of fact, this idea may apply
also to crowds: The perception state of pedestrians can be continuously affected
by the crowding in their surroundings as well as by changes in the arrangement
of different walking areas they visit during a trip.

• More general discrete-continuous couplings. The discrete-continuous approach
can also be definitively freed from the interpretation in terms of living agent
perception and used per se. To this purpose, the minimal conceptual idea to
be retained for a coherent use of our approach is simply that the discrete and
continuous parts are two copies of the same system at different levels (viz.
languages) of description. Then one can mix the two levels for studying the
interplay of the specific information provided by each of them. For example,
this point of view can be an original way of addressing the wave-particle duality
of light, where the discrete part models electrons as pointwise massive particles
while the continuous one models them as energy waves.

• The application of the approach to Mathematical Biology. Cells are another
living complex system in which the interplay between small-scale granularity
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and large-scale collective distribution can be essential to explain the emergence
of self-organized dynamics. Specifically, in cell migration phenomena, especially
those linked to morphogenesis which produce the formation of visible patterns
(cf. e.g., vasculogenesis, angiogenesis, animal coat pattern formation), the
number of involved cells can be locally rather small for individual behaviors
to impact on group trends. In this case, the discrete/continuous dualism of
the interaction of a single cell with some neighboring ones may not have a
psychological empirical counterpart (like the perception of pedestrians and
drivers) but can be rather based on the concept of cell function. Depending on
its specific physiological function, a cell can have a different level of activation,
which corresponds to a different way of being detected by other surrounding
cells. Highly activated cells, which serve as leaders (the so-called tip cells), act
as well-detected point masses, while little activated ones, which simply follow
the leaders (the so-called stalk cells), behave as an indistinct subgroup. Models
for the description of such phenomena may especially take advantage of the
extension of our multiscale approach to several interacting populations, each cell
population being identified by its function. It is also worth mentioning that cell-
type biological problems can motivate nontrivial extensions of our multiscale
approach to cases in which the mass of the system is not conserved in time. In
fact, depending on the considered time scale, cell duplication/death events can
come into play, which require to be handled in turn at a multiscale level without
relying on the continuity equation only.

1.4.3 Purpose and Structure of the Book

This book is intended to be read by scholars and professionals with different
backgrounds. In particular applied mathematicians, physicists, engineers, but pos-
sibly also system biologists and psychologists as well as people interested in
mathematical modeling and simulation of nonstandard complex systems of real
world. The book is divided in two parts and eight chapters, plus two appendices.
The presentation in the two parts follows different styles, corresponding in principle
to different target audiences.

The first part, encompassing Chaps. 1–3, does not require specific technical skills,
hence it is dedicated to a broad audience that can grasp the essential spirit and
the potential contribution of mathematical modeling applied to crowd dynamics.
It provides a general overview of the main phenomenological features of crowds
and a preliminary assessment of the relevant methodological ideas constituting
the cultural background of the mathematical approach promoted in the book. In
addition, it offers to the reader virtual experiments which, on the one hand, visualize
the main kinds of pedestrian behavior the book deals with and, on the other hand,
point out the ability of mathematical models to address such phenomena.
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The second part, encompassing Chaps. 4–8, is instead characterized by a more
technical content and is therefore addressed to people with some mathematical back-
ground wanting to enter the details of modeling and model analysis. It opens with
a critical overview of models available in the literature. Next, it examines in depth
our multiscale approach including theoretical results of qualitative and numerical
analysis related to it. Finally, it discusses the generalization and application of the
approach to other real world systems, possibly also distant from crowd dynamics,
which can be tackled in an original manner under a multiscale perspective.

We describe now in some detail the content of the remaining book chapters:

• Chapter 2 presents numerical simulations performed by means of the multiscale
model, which will be technically described later in Chap. 5. The purpose is to
visualize some typical phenomena in crowds while demonstrating the potential
of the model to catch and reproduce them. Specifically, the chapter contains a
collection of virtual experiments mimicking typical real world situations. Some
of them aim at showing qualitatively the emergence of collective self-organized
patterns, such as lane formation and intermittent flow at bottlenecks generated
by pedestrian counter-flows in free and built environments. Others address more
quantitative issues, such as the estimate of the average outflow time of a crowd
leaving a room, in order to point out the differences in the model predictions due
to different levels of individual perception, viz. of discrete-continuous coupling.
Finally, others consider less standard pedestrian dynamics such a those exhibited
by social groups.

• Chapter 3 presents some psychological aspects of pedestrian behavior, which can
be taken into account in the mathematical models in order to make them more
truthful. Specifically, it reports and discusses the most important experimental
findings about the way in which pedestrians choose their path and interact with
external structures, thereby completing the phenomenological picture.

• Chapter 4 introduces mathematical models of pedestrian flow at the various
scales discussed in the present chapter, namely microscopic, macroscopic, and
mesoscopic. The goal is by no means to review thoroughly the state-of-the-art
on the subject, which is evolving quite quickly, but rather to outline, through
selected examples along the mainstreams of the current literature, the cultural
context in which the book is set. In addition, this overview of single-scale models
can contribute to a deeper understanding of the multiscale approach promoted in
the book.

• Chapter 5 details the multiscale modeling approach, including its numerical
treatment, which is the core topic of the book. The proposed derivation, however,
does not cover entirely the path across the various scales outlined above in
Sect. 1.4.1. The style is rather that of an “educated guess” leading directly
to the final measure-valued equation, which then allows one to play with the
space structure of the pedestrian distribution. In particular, the key point is the
reinterpretation of the classical continuity equation in terms of abstract measures,
the measure of a given set referring heuristically to the number of pedestrians
contained in the space region individuated by that set. The reason for this
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approach is that it is a more “user-friendly” first glance at the problem, especially
in view of its extension to other contexts possibly distant from crowd dynamics.
On the other hand, the rigorous multiscale derivation of the equations for crowd
dynamics will be proposed in the subsequent chapter as an introduction to the
theoretical treatment of measure-valued models.

• Chapter 6 is devoted to a theoretical analysis of the mathematical structures
presented in Chap. 5. It opens with the formal derivation of the measure equations
out of a microscopic particle description of the system. Then it presents results
(with proofs) concerning the well-posedness of related initial-value problems and
the convergence of the numerical scheme specifically conceived for approximat-
ing them and producing simulations (such as those shown in Chap. 2). Out of
such a theoretical analysis, it also provides indications, to be possibly regarded
as modeling guidelines, for the construction of particular models fitting the
scope of the developed theory, hence not only physically consistent but also
mathematically robust. This chapter assumes that the reader has been exposed to
measure theory and functional analysis. Practitioners not interested in technical
mathematical aspects should be able to skip it without loosing much of the
understanding of the contents of the book.

• Chapter 7 pushes forward the theoretical analysis of the models initiated in
Chap. 6 by investigating more in depth the properties of dynamical evolutions
in Wasserstein spaces. Motivations are provided for supporting the idea that
such spaces are more suited than classical Lp spaces to study problems of
interacting agents. In particular, the chapter shows that the Wasserstein metric
is a more proper tool than the L1 metric not only from the modeling point of
view but also as far as the theoretical properties of the models are concerned.
For instance, it demonstrates by means of an explicit example that the L1 metric
may fail in giving the uniqueness of the solution while the Wp metric does not.
Moreover, it discusses a few other numerical schemes for the approximation
of the solutions of models from both Lagrangian and Eulerian perspectives
and addresses further interaction models that fit the general theory. Finally, it
proposes a well-posedness theory in measure for transport equations with source,
technically mass balance (rather than conservation) equations. This implies, in
particular, extending the usual Wasserstein metric to measure which do not
carry the same mass. It is worth stressing that transport equations with source
play an important role in modeling a lot of physical systems, including the one
which constitutes the main target of this book. Sources (or sinks) of pedestrians
can be indeed a good way of describing mathematically e.g., stairs connecting
floors of a building, which produce an injection (or removal) of people in
the domain. Chapter 7 assumes that the reader is provided with a quite solid
background in measure theory and functional analysis. A quick account of the
basic concepts can be found in Appendix A. Readers not interested in advanced
theoretical issues can feel free to skip this chapter with no consequences on the
understanding of the rest of the book.

• Chapter 8 offers conceivable improvements and generalizations of the multiscale
structures presented in the book, up to their use for problems much different from
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the original one which motivated them. In more detail, it deals with: � The deriva-
tion of measure-valued equations out of a microscopic modeling of Newtonian-
like dynamics (i.e., ones involving the concept of acceleration of the particles),
so as to export the ideas of individuality, collectivity, and perception also to the
so-called second order models. � The extension of the perception-based discrete-
continuous coupling to cases in which the agent perception, hence their behav-
ioral strategy, evolves in time and space possibly under the influence of the sys-
tem itself. Remarkably, the chapter shows how this idea can be suitable to model
driver behavior in vehicular traffic by coupling an essentially one-dimensional
continuous perception on straight roads to a genuinely two-dimensional gran-
ular perception at crossroads. � Finally, the application of the measure-based
discrete-continuous coupling to a toy problem conceptually different from crowd
dynamics, namely a wave-particle complementary description of the Brownian
motion, having in mind the well-known analogous dualism of light.

The following chart illustrates three possible reading paths through the chapters
of the book, corresponding to three different types of readership: a more modeling-
oriented path (red line), a path which emphasizes analytical aspects (blue line),
and finally a path specifically concerned with phenomenological and experimental
issues of crowd dynamics.
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The book is completed by two appendices. Appendix A provides for the reader’s
convenience some basic background material about measure, probability, and
transport theory, which should help grasp the essential ideas necessary to understand
the contents of Chaps. 6 and 7. Appendix B reports instead a conceptual pseudo-
code which should facilitate the implementation, in one’s own favorite programming
language, of the multiscale numerical scheme introduced in the book (and actually
used to produce all simulations presented in Chaps. 2 and 8).

1.5 Bibliographical Notes

Section 1.1.1 For the behavioral rules of pedestrians in mathematical models
we refer the reader to the references of Chap. 4, especially those regarding
microscopic models. Here we just point out three papers: The one by Cristiani
et al. [46] clearly elucidates the separation between visual field and sensory
region, and investigates the effects of different sensory regions; The paper by
Ballerini et al. [11] is a good recent reference about the distinction between
metric and topological interactions, although these concepts were well known
for a long time in the biological literature; The paper by Helbing et al. [85] is a
good source of information for panic conditions in pedestrians.

Section 1.1.2 From the experimental literature, we mention, among others, Hel-
bing et al. [84] and Moussaïd et al. [126] for the lane formation in crossing
pedestrians; Moussaïd et al. [128] and references therein for the V’s and river-like
patterns; Daamen and Hoogendoorn [53] and Seyfried et al. [157] for arching at
bottlenecks. Helbing et al. [84] for intermittent flows at bottlenecks.

Section 1.2.2 We will dwell on the specific literature about microscopic, macro-
scopic, and mesoscopic models of pedestrian dynamics in the bibliographical
notes of Chap. 4. Here we simply recall that the seminal works in which methods
of the kinetic theory are applied to vehicular traffic are those by Prigogine [147]
and Prigogine and Herman [148]. On the same line are also the works by Klar,
Wegener, and coauthors, see [110] for a comprehensive review. Concerning
swarm dynamics, Degond and Motsch [60] describe from a kinetic point of
view some Vicsek-type microscopic models of flocking (cf. Vicsek et al. [164]).
Similarly, Carrillo et al. [33] and Ha and Tadmor [78] use Vlasov-type (i.e.,
mean field) kinetic models to study the microscopic model by Cucker and
Smale [51, 52].

Section 1.3 See Chap. 4 (Sect. 4.2.1) of this book for further discussion and
examples of fundamental diagrams. A nice reference for a review of the
main self-organized group patterns produced by pedestrians is instead Helbing
et al. [83]. The Braess’ paradox was introduced in [22] in 1969 (see [23] for
a reference in English). Finally, see Chap. 3 of this book for an overview of
psychological research, both theoretical and experimental, about pedestrian path
selection and movement in organized environments.
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Section 1.4.1 Besides the present one, a few other books treating various aspects
of the dynamics of crowds are currently available. We recall here the book by
Adamatzky [1], which focuses on the mental dynamics driving the fusion of
individualities into the collectivity during the formation of a crowd; The book
by Kachroo et al. [107], which, starting from the extensive research available
on vehicular traffic, develops two-dimensional macroscopic models for the
control of crowd behavior in connection with the implementation of evacuation
strategies; The books by Pelechano et al. [139] and by Thalmann [159], vari-
ously concerned with the simulation of virtual crowds for computer animation
purposes.
Multiscale modeling/simulation has become nowadays a so popular concept in
many different application fields that nearly everyone has his own way of under-
standing and implementing it. For the reader’s convenience, and without claiming
to be thorough, we give here a few clues, to be used as starting points for further
personal bibliographical search, which exemplify other multiscale approaches
more or less distant from the one promoted in this book. Quarteroni and
Veneziani [149] use a multiscale geometric approach to the network-structured
circulatory system. Donev et al. [66] and Weimar [169] use multiscale algorithms
coupling particle-based and continuous solvers for reaction-diffusion systems in
fluid dynamics and crystallography. Kraft [113] adopts a scale alternation in a
problem of solidification for reducing the global computational effort. Bresch
et al. [24] use homogenization techniques for solving the Stokes equations in a
rough domain by deducing macroscopic pressure coefficients incorporating the
effect of the microscopic rugosity. Finally, Degond et al. [58, 59] and Herty
and Moutari [92] propose macro-kinetic models and solvers for fluid flows
and vehicular traffic, respectively, aiming at a better description and numerical
resolution of localized non-equilibrium regions (e.g., crossroads in vehicular
traffic) where empirical constitutive relationships valid in equilibrium conditions
are strongly violated.

Section 1.4.2 See Chaps. 5 and 8 of this book for a preliminary treatment of some
of the generalizations of the multiscale approach. In particular: Sect. 5.6 for the
extension to two interacting populations; Sect. 8.1 for the derivation of second
order measure-valued models; Sects. 8.2 and 8.3 for the application to vehicular
traffic problems; Sect. 8.4 for a prototypical example of multiscale treatment
of the wave-particle duality based on Brownian motion. Moreover, the paper
by Piccoli and Rossi [142] provides a theoretical contribution toward measure-
valued models based on the mass balance equation with source for possible
applications in Mathematical Biology.



Chapter 2
Problems and Simulations

Abstract In this chapter we give an informal introduction to the multiscale model
and present some case studies of interest for applications, along with related
numerical simulations. Results presented here are somehow complementary to those
usually presented by physicists, engineers, and computer scientists. Indeed, we aim
at showing how mathematical modeling can help in developing truthful pedestrian
models, and at giving a sample of phenomena which can be simulated without the
introduction of artificial or ad hoc effects.

2.1 An Informal Introduction to the Multiscale Model

We present here the main ideas of our multiscale model, avoiding heavy technical-
ities and advanced mathematical tools. A more rigorous scale-free description of
the model will be given in Chap. 5, within a measure-based modeling framework.
Basically, we assume that we have two models which describe the same physical
phenomenon at different scale. To fix the ideas, we assume that the first model
is microscopic (agent-based) and the second one is macroscopic (continuous).
Moreover, without loss of generality, we assume that they are both first order
models, which means that we model the velocity of the agents (as a nonlinear
function of their positions), and not their acceleration as in classical Newtonian
frameworks.

Hereafter, we focus on pedestrian motion (see Sect. 8.4 for a different applica-
tion). We denote by N the number of pedestrians under observation, by Xk.t/ 2
R
2 the position of the k-th pedestrian, by X WD .X1; : : : ; XN / the vector of

the positions, and by X�k D .X1; : : : ; Xk�1; XkC1; : : : ; XN / the vector of the
positions but the k-th. We also denote by �.t; x/ the average density of pedestrians
at position x 2 R

2 and time t > 0. As usual, we assume that the microscopic model
is constituted by a system of ordinary differential equations of the form

PXk.t/ D vmŒX
�k.t/�.Xk.t// k D 1; : : : ; N; (2.1)

E. Cristiani et al., Multiscale Modeling of Pedestrian Dynamics, MS&A 12,
DOI 10.1007/978-3-319-06620-2__2,
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where vmŒX�k�.x/ is the microscopic velocity field at x, which also depends
implicitly or explicitly on the positions of all the other pedestrians. The velocity
vm takes into account all the desired features of the model, such as the target,
the repulsion from the other pedestrians, the sensory region, etc. The macroscopic
model is instead assumed to be constituted by a conservation law of the form

@

@t
�.t; x/Cr � ��.t; x/ vM Œ�.t; �/�.x/

� D 0; t > 0; x 2 R
2; (2.2)

where vM Œ��.x/ is the macroscopic velocity field at x, which, similarly to the
microscopic case, depends on the density � in all the space (nonlocal dependence)
at time t . However, the specific form of the models is not essential to define the
multiscale model. The condicio sine qua non is the explicit presence of the velocity
fields vm and vM , or, analogously, the presence of the acceleration fields in the case
of second order models.

The multiscale model is based on a suitable combination of the microscopic and
macroscopic velocity fields. To get it, vm and vM have to be defined on the same
domain. The macroscopic velocity vM is already defined at any x 2 R

2, then it
can be simply computed at the points Xk in order to use it in (2.1) in place of vm.
The case of the microscopic velocity is instead more complicated. Indeed, vm is
only defined at the pedestrians’ positions, and not everywhere in the space. This
can be fixed in several ways depending on the specific applications. In our case it
is convenient introducing the concept of test pedestrian, i.e. a .N C 1/-th fictitious
pedestrian who is temporarily placed at the point of interest just to compute the
velocity field she would be subject to. Following this approach, in order to use vm
in (2.2) in place of vM , we consider a test pedestrian located at XNC1 D x 2 R

2,
and then we compute vmŒX�.x/. Once the two velocity fields are made directly
comparable, they are coupled by defining a multiscale velocity field as a linear
combination of the two, i.e.

vŒX; �� WD �vmŒX�C .1 � �/vM Œ��; � 2 Œ0; 1�: (2.3)

Note that v will depend on both the positions of all the single pedestrians and their
density in all the space, and can be defined at any x 2 R

2, included at Xk’s.
Finally, the new velocity field v takes the place of both vm and vM in (2.1)–(2.2),

so that both the single pedestrians and their density evolve by means of the same
velocity. As a consequence, single pedestrians and the density should be considered
as a whole, since they are driven by the same velocity field, which, in turn, is
computed with the contribution of both of them.

The key parameter of the multiscale model is the number � 2 Œ0; 1�, which con-
trols the contribution of the discrete and continuous components in the computation
of the velocity field. Namely, � plays the role of an interpolation parameter, in the
following way. If � D 0, single pedestrians and their density evolve considering only
the continuous density of pedestrians. This approach is similar to one often used in
literature in which the evolution of a system is firstly computed by a macroscopic



2.2 Effects of Repulsion 31

model, and then a number of Lagrangian particles are tracked by means of the pre-
computed velocity field. Conversely, if � D 1 single pedestrians and their density
evolve considering only the positions of the single pedestrians. This approach is
much less usual. Finally, if 0 < � < 1 the two scales are fully coupled, and both
discrete individuals and continuous density contribute to the velocity field.

In Chap. 5 the multiscale model will be recovered following a measure-theoretic
approach. The main advantage of this (more abstract) approach is that the model is
completely scale-free, meaning that the evolution equation describing the pedestrian
motion can be written with no a priori choice of the scale of observation. The model
can be later specialized in order to follow single pedestrians (discrete point of view),
or their density (continuous point of view), or both individuals and density at the
same time.

In the simulations which follow, we make use of our multiscale model. As
particular cases of it, we also consider purely continuous (� D 0) and discrete
(� D 1) model. A precise definition of the velocity field can be found in Sect. 5.2.
Here we just reveal that we take into account the following pedestrian features
(cf. Sect. 1.1.1): Target (desired velocity), repulsion and relative sensory region,
attraction and relative sensory region, and metric/topological interactions. Panic
conditions are not considered.

2.2 Effects of Repulsion

To begin with, in the frame of a purely macroscopic model we investigate the self-
organization spontaneously emerging from repulsion within a group of pedestrians
in motion in a clear environment. The group is initially compact and has a homo-
geneous density (Fig. 2.1a), and the desired velocity (see definition in Sect. 1.1.1)
coincides with the unit vector in the horizontal direction, i.e. the group is walking
rightward. No attraction is assumed between individuals, so that, as soon as people
start to interact, the model predicts an expansion of the crowd in consequence of the
repulsion among group mates. At the same time, the density decreases and becomes
inhomogeneous due to the anisotropy of the sensory region, which is here restricted
in front (Fig. 2.1b). Front-rear symmetry is lost, and most people remain initially
concentrated in the rear part of the group, where the influence of the mass ahead is
stronger. By consequence, in this zone the velocity is lower, hence, as time goes by,
the group elongates in the horizontal direction until the distribution of people again
becomes almost homogeneous (Fig. 2.1c). Only the motion of the leaders seems
to be basically unperturbed (Fig. 2.1b, c), coherently with the fact that they simply
follow the desired velocity because nobody is in front of them.

Remarkably, in a purely microscopic setting we can qualitatively reproduce the
same spontaneous organization of the crowd. Starting from a regular square config-
uration (Fig. 2.2a), pedestrians move rightward and interact only with pedestrians in
front of them. In Fig. 2.2b we show the final configuration, directly comparable with
that in Fig. 2.1c.
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a b c

Fig. 2.1 Spontaneous arrangement of a macroscopic crowd. Starting from a compact cluster, the
group expands and the density decreases. Leaders tend however to maintain the initial configuration
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Fig. 2.2 Spontaneous arrangement of a microscopic crowd. Starting from a compact cluster, the
group expands and the density decreases. Leaders tend however to maintain the initial configuration

Those results show that the discrete and the continuous dynamics may lead, at
least in some cases, to the same results. This observation motivates and justifies
a coupled multiscale approach. Let us now turn on the multiscale features of the
model, showing both the continuous and the discrete components of the crowd.
We also switch the desired velocity off, so that the total velocity coincides with that
caused by the interactions among pedestrians. Starting again from the homogeneous
initial condition, shown in Fig. 2.3a, the simulation expands the group as predicted
by the multiscale model choosing the interpolation parameter � equal to 0, 0:3, and
1. The simulation runs until a fixed final time, common to all cases, is reached;
Results are shown in Fig. 2.3b–d.

The main features of the dynamics outlined above are caught at all scales. In
particular, the effect of the only frontal repulsion is visible at the head of the group,
where pedestrians stay aligned on a vertical line as they are initially, because there
is none in front of them. This effect clearly shows up looking both at the density
distribution at the macroscopic scale (Fig. 2.3b) and at the individual pedestrians at
the microscopic scale (Fig. 2.3c).



2.2 Effects of Repulsion 33
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c d

Fig. 2.3 (a) Initial condition. Crowd distribution at the final time computed by the multiscale
model with (b) � D 0, (c) � D 1, and (d) � D 0:3

As an interesting effect of the microscopic scale driving the macroscopic dynam-
ics, we notice some kind of “density holes” near every microscopic pedestrian in
the case � D 1 (Fig. 2.3c). They are actually small areas of very low density, caused
by the fact that microscopic repulsion has a great impact at the macroscopic scale.
Indeed, the microscopic granularity is seen as a singularity in the average crowd
distribution, and in the discrete model the evolution of the macroscopic density is
fully ruled by the microscopic scale. With the choice � D 0:3 (Fig. 2.3d) the hole
effect is instead limited, and a good compromise between the two scales is reached.
Furthermore, in Fig. 2.3d pedestrians are less scattered than in Fig. 2.3c, meaning
that the contribution of the continuous model on the overall dynamics has, in a sense,
a homogenizing effect. Conversely, in Fig. 2.3d the macroscopic density is more
scattered than in Fig. 2.3b, thus the microscopic scale destroys the macroscopic
smoothness and introduces a non-negligible granular effect in the overall dynamics.
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Fig. 2.4 Moments of inertia of the crowd distribution as functions of the interpolation parameter:
(a) horizontal axial moment I1; (b) vertical axial moment I2; (c) barycentric moment IG . Note that
I1 C I2 D IG

These novel behaviors show that the multiscale approach is not a mere exercise to
match two existing models, but it can effectively model a wider set of flow instances,
with new results and insights.

Scale Interpolation and Group Shape

In this paragraph, in order to investigate more in depth the intercorrelation between
the scales, we study how the crowd shape depends on the interpolation parameter
� . We study the shape of the crowd by computing the moments of inertia I of the
crowd. Indeed from classical mechanics it is known that moments of inertia provide
quantitative information on the shape of a body. We denote by I1, I2 and IG the
horizontal axial, vertical axial and barycentric moments of inertia, respectively.

Referring to the simulation setup of Fig. 2.3, we compute the significant moments
of inertia of the final configuration of pedestrians. The graphs in Fig. 2.4 show
the trend of the three moments of inertia of the crowd mass as functions of the
interpolation parameter � . Notice that the moments of inertia of the multiscale mass
are linear interpolations of the corresponding moments of inertia of the discrete
and the continuous masses. The latter are therefore also plotted in the graphs for
reference. The most relevant fact is that the multiscale moments of inertia are almost
constant with respect to interpolation parameter (aside from small border effects,
especially close to the fully discrete case). This fact indicates that the distribution of
the mass is essentially independent of the scale, and therefore the discrete and the
continuous dynamics arising from pedestrian interactions are compatible with each
other and allow a coupled approach by scale interpolation.
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Fig. 2.5 Effect of attraction in walking pedestrians. (a) Initial condition; (b) topological attraction
makes the three clusters merge without compressing it; (c) metric attraction with large radius gives
a result qualitatively similar to the topological one, but with more compression; (d) when attraction
is metric with small radius, merging of clusters is limited to those which are sufficiently close

2.3 Metric vs. Topological Attraction

In this section we investigate the effect of attraction in a purely continuous
framework. The interaction velocity now also includes an attractive component
toward group mates (cf. Sect. 1.1.1), with a strength significantly greater than that of
repulsion, along with an isotropic sensing domain for attraction spanning the whole
space around the agents.

The initial condition features three clusters of pedestrians at the same homo-
geneous density, located a certain distance away from one another along the left
side of the domain (Fig. 2.5a), who walk rightward. We first consider the case of
a topological correction (cf. Sect. 1.1.1), meaning that pedestrians are allowed to



36 2 Problems and Simulations

adjust the amplitude of their zone of attraction so as to interact with a predefined
number of people, which in this simulation is set at 66% of the total mass initially
present in the domain. Then the three clusters tend to merge in a unique group,
as shown in Fig. 2.5b. If instead we do not include any topological correction,
the dynamics depend on the size of the metric interaction neighborhood (i.e., the
sensory region). In particular, for a large radius of attraction (Fig. 2.5c) the result is
qualitatively similar to that obtained with topological attraction but shows a higher
level of compression, while for a small radius (Fig. 2.5d) only the two clusters
initially sufficiently close merge, the third one being instead unaffected by the
presence of other agents in the domain.

This test clearly shows that topological attraction between pedestrians greatly
affects the resulting pattern. This does not mean that it is impossible to obtain similar
structures with a purely metric attraction, by duly tuning its radius. However, the
topological correction is essential in order to deal with a large value of the allowed
interaction distance. Indeed a metric upper bound to the radius of attraction exists,
which translates the fact that pedestrians are in no case concerned with very far
mates, and which should necessarily coincide with the fixed radius of attraction
in a purely metric approach. Now, such an upper bound is in general rather large,
because pedestrians are able to see quite far, and can be attracted even by far fellows
if necessary. Therefore, once the group is formed, a purely metric attraction with a
large radius would imply attraction with an exceedingly large number of pedestrians.
Thus, the topological correction is the only way to stay cohesive with a reasonable
number of group mates while keeping a large interaction neighborhood. As a further
confirmation of this, the test shows that a small interaction neighborhood in the
purely metric approach disrupts cohesion, and aggregation is only partial, since far
individuals may not be seen.

2.4 Flow Through a Bottleneck

As the first example, we consider the case of a group of pedestrians who want to go
through a single narrow passage, obtained by placing two obstacles in front of each
other as in Fig. 2.6.

In this simulation attraction is not active and a quite strong repulsion is restricted
in front. Sliding boundary conditions are imposed along the boundaries of the
obstacles. The initial condition is an inhomogeneous density of people, confined in
the left area of the domain (Fig. 2.6a). The crowd then moves rightward, and when
approaching the bottleneck (Fig. 2.6b), people initially pass through at the maximum
speed (Fig. 2.6e). However, as all pedestrians cannot access the bottleneck at
the same time, an obstruction builds up soon (arching effect, Fig. 2.6c). As a
consequence, speed before the bottleneck is low, and some individuals in the middle
of the group are even forced to stop, whereas beyond the bottleneck it attains its
maximum again (Fig. 2.6f). After a certain time, the whole group flows through the
bottleneck and the obstruction is depleted (Fig. 2.6d, g).
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Fig. 2.6 Pedestrian dynamics in presence of obstacles: a crowd wants to reach the right edge of the
domain, going through a bottleneck. Upper row: density map. An obstruction forms as pedestrians
try to access the passage (arching effect), until all people flow to the opposite side. Lower row:
speed map. The speed of the crowd is inhomogeneous, with a sharp transition from low to high
values across the bottleneck in correspondence of the opposite transition in the values of the density

The second example considers a more complicated environment, in which
pedestrians have to flow through either of two bottlenecks, which are located beside
one another. In particular, pedestrians must choose one of the bottlenecks in order
to reach their final destination. This problem may model, for instance, the flow of
passengers exiting the cars of a subway and then heading for the exit of the station
via an escalator.

Simulations show that at the beginning people tend to access the closer passage
(Fig. 2.7b), but later on some individuals, pushed sideway by the crowd at the
entrance of the first bottleneck, decide to take the other passage (Fig. 2.7c). This
gives rise to a flow also in the second bottleneck: Pedestrians branch off at the
separation of the two bottlenecks (Fig. 2.7d), until all of them have entered either
passage (Fig. 2.7e).

This is consistent with experimental observations: A typical station may have
two (or even more) adjacent escalators that pedestrians can use to reach the ground
level, however it is commonly observed that, on average, they prefer to take the
closest one to their starting point. This behavior is clearly caught by the model,
indeed Fig. 2.7a–f show a lower crowd density in the farthest passage.

Let us come back to the first example and investigate the influence of the coupled
microscopic and macroscopic effects on the estimated average outflow time, i.e. the
time pedestrians need to pass the bottleneck. This will provide meaningful insights
into the way in which the microscopic granularity works within the macroscopic
flow. The scenario of the simulation is depicted in Fig. 2.8.
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Fig. 2.7 Evolution of the density of pedestrians at successive time instants for the problem of two
narrow passages

We consider an estimator of the outflow time defined as the average time needed
to empty the left room weighted by the percent mass of crowd that, at each time
instant, still has to leave the room. In this way the estimator is mainly affected by
the behavior of the majority of pedestrians, and is not very sensible to the behavior of
the very last pedestrians, which could instead largely influence the classical outflow
time (i.e., the time needed by all pedestrians to leave the room). The graphs of
Fig. 2.9 show the trend of this estimator as a function of the interpolation parameter
for a small crowd of 10 pedestrians and a large crowd of 100 pedestrians. In
both cases, the two analogous curves, computed by using only the discrete or the
continuous mass, are plotted for suitable reference. The multiscale average outflow
time is the linear interpolation of the corresponding microscopic and macroscopic
times.

The trend of the average outflow time is qualitatively similar for both the small
and the large crowd, in particular it is decreasing with the interpolation parameter � .
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Fig. 2.8 A crowd leaving a room through a door, initial condition (a) and underway outflow (b)

a b

2

2.2

2.4

2.6

2.8

3

0 0.2 0.4 0.6 0.8 1
θ

10 pedestrians

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1
θ

100 pedestrians

microscopic macroscopic multiscale

Av
er

ag
e 

ou
tfl

ow
 ti

m
e

Fig. 2.9 (a) Average outflow time as a function of the interpolation parameter � for a crowd of 10
pedestrians and (b) 100 pedestrians

This elucidates the role played by a more influential microscopic granularity within
the macroscopic flow: The more the multiscale coupling is biased toward the
microscopic scale, the more fluent the crowd stream becomes (and consequently
the average outflow time decreases). This can be explained considering that the
interpolation parameter � can be viewed as the percent mass shifted from the
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macroscopic to the microscopic scale in consequence of the multiscale coupling.
Subtracting interacting macroscopic mass from the system progressively reduces
the action of the macroscopic interactions while enhancing that of the microscopic
ones. Since the latter are less distributed in space, because the microscopic mass is
clustered in single points, this ultimately results in fewer deviations from the desired
velocity and the desired paths.

2.5 Crossing Flows

Here we study the problem of two groups of people walking in opposite directions
toward one another.

2.5.1 Lane Formation

In order to model crossing flows we need two densities describing the spatial
distribution of the two pedestrian groups. Each group has its own desired velocity,
which is unaffected by the desired velocity of the opposite group. On the other
hand, each interaction velocity now depends on both pedestrian distributions, indeed
the dynamics triggered by encounters among individuals belonging to different
populations plays a relevant role in this problem. Specifically, we assume that
pedestrians of either population feel uncomfortable when too close to pedestrians
of the opposite population, due to their different walking targets. Therefore, they try
to keep away from areas of high concentration of people coming in the opposite
direction, aiming at gaining room for their walking direction. We assume no
interaction among pedestrians belonging to the same population, so as to focus
specifically on the effect of the interactions between the two oppositely walking
groups. We model two uninterrupted flows of pedestrians. One population enters
the domain from the left boundary while the other enters from the right boundary.
The desired velocity is .1; 0/ for the first population and .�1; 0/ for the second one,
that is first population is walking rightward and second population leftward.

Let us begin with a purely macroscopic approach. Figure 2.10 shows the
prediction of the model in the case the two populations are equal, so that the behavior
is expected to be perfectly symmetric. Indeed, the symmetry of the initial datum is
preserved. Although the result is rather satisfactory from the mathematical point
of view, the final stable configuration is quite unrealistic, meaning that it is not
observed in actual pedestrians. Figure 2.11 shows the results in the case in which the
two populations are not equal. More precisely, the first one is larger than the second
one. It is clear that the difference between the two populations leads to the break
of the left-right symmetry. This test shows the ability of the model to reproduce
the alternate walking lanes, which are experimentally observed as a characteristic
self-organization phenomenon in crossing flows. A question naturally arises: Why
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Fig. 2.10 Two uninterrupted symmetric flows of macroscopic pedestrians. Initial (top) and final
(bottom) configuration. Left-right symmetry is not lost although each population breaks in more
than one group

Fig. 2.11 Two uninterrupted asymmetric flows of macroscopic pedestrians. Initial (top) and final
(bottom) configuration. 2C 1 lanes are formed

we observe exactly two and one lanes respectively, instead of a different number
of lanes? Figures 2.12 and 2.13 answer this question, showing that the number of
lines depend on the extension (in the vertical direction) of the two populations. In
the tests of Figs. 2.11 (2 C 1 lanes), 2.12 (3C 2 lanes) and 2.13 (4C 3 lanes) the
first population has a vertical extension of 0.4, 0.6 and 0.8 respectively, while the
difference between the extensions of the two populations is kept fixed to 0.2.

We recall that the mathematical model has not been conceived with the specific
purpose of describing the walking lanes addressed here. Rather, we stress that the
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Fig. 2.12 Two uninterrupted asymmetric flows of macroscopic pedestrians. Initial (top) and final
(bottom) configuration. 3C 2 lanes are formed

Fig. 2.13 Two uninterrupted asymmetric flows of macroscopic pedestrians. Initial (top) and final
(bottom) configuration. 4C 3 lanes are formed

model is able to catch this behavioral custom as a by-product of much more general
and elementary modeling principles (cf. Sect. 1.1.1), resorting ultimately to the basic
idea of nonlocal interactions among pedestrians.

In the frame of a microscopic model we obtain similar results, in particular we
observe again the appearance of the lanes. It is instead impossible to get a perfectly
symmetric result as the one shown in Fig. 2.10, due to the intrinsic inhomogeneous
granular effects characterizing microscopic models. Figure 2.14 shows the outcome
of the simulation in the case of two populations formed by the same number of
agents randomly distributed in a symmetric portion of the domain. Figure 2.15
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Fig. 2.14 Two uninterrupted symmetric flows of microscopic pedestrians. Initial (top) and final
(bottom) configuration. Symmetry is broken by the granularity

Fig. 2.15 Two uninterrupted asymmetric flows of microscopic pedestrians. Initial (top) and final
(bottom) configuration. 2C 1 lanes are formed

shows the outcome of the simulation in the case the two populations are non equal,
to be compared with Fig. 2.12.

Let us now switch to the multiscale features of the model, showing both the
continuous and the discrete components of the crowd, and consider again the test
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Fig. 2.16 Two uninterrupted symmetric flows of microscopic and macroscopic pedestrians. Initial
(top) and final (bottom) configuration. The effect of a few microscopic pedestrians are sufficient to
break the left-right symmetry

described in Fig. 2.10. We aim at catching one of the main advantages of the
multiscale model, i.e., the introduction of the granularity in a purely macroscopic
setting in a form which is fully justifiable from the mathematical and physical point
of view (see Chap. 5 for details). From Fig. 2.10 it is clear that a purely macroscopic
approach is not able to break the left-right symmetry as it is expected by actual
pedestrians. In order to get realistic results, the right amount of granularity must
be introduced in the model. Figure 2.16 shows the outcome of the simulations
performed by the multiscale model in the perfectly symmetric case. It is remarkable
that the introduction of a few microscopic pedestrians is sufficient to break the
symmetry of the density of pedestrians. Indeed, after the first interaction in the
middle of the domain, two lanes per population are immediately formed, and then
they remain stable.

2.5.2 Intermittent Flow

In the following test we investigate the behavior of two crossing populations who
share a narrow passage (e.g., a door). The setting of the problem is displayed
in the snapshot of Fig. 2.18a. In particular the blue crowd with red microscopic
pedestrians, say population 1, walks rightward whereas the yellow one with green
microscopic pedestrians, say population 2, walks leftward. Let us begin from the
case in which the macroscopic scale leads the dynamics. The bottleneck tends to
clog (Fig. 2.17a): No density nor microscopic pedestrians flow through, except for
a small mass which is able to pass at early times, when the passage is still free. This
is well confirmed by the time trend of the macroscopic flux across the bottleneck
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Fig. 2.17 (a) Clogging at the bottleneck; (b) corresponding macroscopic fluxes arising with the
fully macroscopic dynamics

(Fig. 2.17b): That of population 2 is permanently zero for t � 4:5, whereas that of
population 1 oscillates between small positive and negative values, which implies
that population 1 is pushed backward by population 2 as soon as it tries to cross.

By realizing a multiscale coupling between the continuous and the discrete model
(� D 0:3), we obtain the dynamics depicted in Fig. 2.18 and summarized in Fig. 2.19
via the time trend of the macroscopic and microscopic fluxes across the bottleneck.
The model produces a traffic light effect, i.e. an intermittent flow through the
bottleneck. In more detail, starting from the initial condition depicted in Fig. 2.18a,
pedestrians of population 2 are induced to stop at the bottleneck while those of
population 1 go through at one side (Figs. 2.18b and 2.19 for 4:5 � t � 8:5).
After some time, population 2 reorganizes itself and stops the flow of population 1
(Figs. 2.18c and 2.19 for 8:5 � t � 11), then its larger mass stuck at the bottleneck
locally gives it the necessary strength for repelling opposite walkers and gaining
room in the middle (Figs. 2.18d and 2.19 for 11 � t � 15). Some walkers of
population 1 remain trapped by the stream of population 2 and cannot access the
passage (Figs. 2.18e and 2.19 for t � 15) until most of population 2 has flowed
through (Figs. 2.18f and 2.19 for 15 � t � 17:5).

From the modeling point of view, the difference with the previous fully macro-
scopic case is that the multiscale coupling shifts some macroscopic mass onto
the microscopic pedestrians, all other parameters and initial conditions being
unchanged. The inhomogeneous distribution of this microscopic mass induces a
break of symmetry between the interfacing populations, which finally leads to an
alternate occupancy of the passage according to the repulsion prevailing locally in
space and time.

Shifting the whole mass onto the microscopic pedestrians we obtain that the
microscopic scale leads the dynamics, which produces the outcome displayed in
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Fig. 2.18 Alternate flows at the bottleneck in the multiscale model. Negative values of the density
of the population walking rightward are for pictorial purposes only
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Fig. 2.19 Multiscale model: (a) macroscopic fluxes across the bottleneck; (b)–(c) number of
microscopic pedestrians crossing the bottleneck rightward and leftward, respectively

Fig. 2.20. Now the microscopic granularity fully dominates and the stream is the
fluentest one. As a result, the bottleneck interferes less with the stream than in the
previous cases, and the model reproduces the alternate oppositely walking lanes
(Fig. 2.20a) extensively observed as one of the main effects of self-organization
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Fig. 2.20 (a) Alternate lanes through the bottleneck; (b) corresponding macroscopic fluxes
emerging with the fully microscopic dynamics. Notice that both fluxes are identically zero for
t � 8 because by then both populations have completely flowed across the door

in real crowds. The time trend of the macroscopic flux across the bottleneck
(Fig. 2.20b) confirms that the two populations flow simultaneously through the
passage, with comparable fluxes, in the interval 1:8 � t � 8. After the time t D 8

the macroscopic fluxes are identically zero because by then both populations have
completely flowed across the door.

2.6 Social Groups and One-Many Interactions

In this section we show the combined effects of attraction and repulsion in
describing the walking behavior of social groups of pedestrians. The typical scenario
is a family or a group of friends having a leisure walk in a commercial walkway or
a mall. Walking social groups have some distinctive features: First, their members
want to stay together, keeping visual contact and reaching the destination at the
same time. Second, they want to keep verbal contact, i.e. every group member
wants to hear what the others say. In this context, the attraction force is employed to
guarantee the cohesion of the group. Repulsion force instead has a twofold effect:
If short-range, it allows to avoid collisions. If medium-range and directed against
the direction of motion, it prevents each group member from having a mate behind,
thus making impossible verbal communication.

We first simulate small social groups moving in the right direction in a free
environment. As illustrated in Sect. 1.1.2, small groups (3–4 members) deploy
themselves in a V-like formation. Figure 2.21 shows the result of purely microscopic
simulation for 3, 4, and 12 pedestrians. Attraction and short-range repulsion is
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Fig. 2.21 V-like formations in walking social groups. The pattern is obtained by means of an
isotropic attraction and an anisotropic repulsion. The patterns created by large groups are less
stable than those formed by small groups. (a) 3 members; (b) 4 members; (c) 12 members

all-to-all, while medium-range repulsion is limited to an angle of 160ı centred in
the opposite direction of motion. In all cases V-like formation arises, being much
more stable in small groups rather than large groups. In the latter case, instability
leads to the break of the pattern and several V’s arise in place of a unique large V.

When social groups move in a crowded environment, their shape changes. The
ease of communication becomes secondary, and the need for keeping some contact
with the rest of the group actually leads the behavior. Figure 2.22 shows the results
of a purely microscopic simulation for 5 and 10 pedestrians, respectively. The group
first walks in a free environment, then it enters a crowded region. We assume here a
frontal metric attraction and repulsion among the group members, which are active
before and after the group enters the crowd. In the uncongested area the group
takes an irregular circular-like shape. When the group reaches the mass of strangers
(frozen in the simulation) the group quickly re-arranges itself taking a river-like
configuration, cf. Sect. 1.1.2. As for V’s, river-like pattern is not stable for large
groups. Indeed, large groups have the tendency to split up in two or more lanes
(Fig. 2.22d).

The group entering the crowd is clearly better described in a multiscale fashion.
As we did in Sect. 2.5, we consider two populations: The first one, modeled with
� D 1 (evolution guided by the single pedestrians) moves to the right and describes
a 7-member social group. The second one, modeled with � D 0 (evolution guided
by the macroscopic density) moves slightly to the left and describes the crowd. The
interactions are modeled as follows:

• Pop. 1 vs Pop. 1: frontal metric long-range attraction and short-range repulsion.
• Pop. 1 vs Pop. 2: frontal metric medium-range repulsion.
• Pop. 2 vs Pop. 1: frontal metric short-range repulsion.
• Pop. 2 vs Pop. 2: frontal metric medium-range repulsion.
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Fig. 2.22 A social group walks into a crowded region. (a)–(b) A small group with 5 members;
(c)–(d) a large group with 10 members

The main difference with respect to the previous test is that here the crowd is not
frozen, but has its own dynamics. In particular, there is an internal repulsion which
makes the crowd come back to the original shape after the passage of the social
group (otherwise the “wake” left by the group in the crowd would last forever).
The repulsion makes also the crowd expand to fill the whole space and, until the
equilibrium is reached, the density in the inner part is higher than the density in the
outer part of the crowd. Figure 2.23 shows the result of the simulation. As before,
the shape of the group changes after the interaction with the crowd and a river-like
configuration shows up. Since the group is repulsed from the crowd, it tends to move
toward its boundary, where the density is lower.

As a last example of social group, we consider the case of a crowd following a
leader, for instance a group of tourists and their guide. The leader is a microscopic
pedestrian who behaves in a different way with respect to all of the other group
members: She is the only one informed of the way to go, hence she walks with a
pre-assigned velocity to the right, independently of the others (i.e., she does not
interact with the rest of the group). She only stops when her distance from the
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a b

Fig. 2.23 A 7-members social group walks into a crowded region. Only the scale leading the
dynamics is plotted. (a) Before the interaction; (b) after the interaction
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Fig. 2.24 (a) Initial condition; (b) the group assumes an elongated configuration; (c) the group is
formed and follows the leader; (d) the leader waits for the group while the group moves on

group becomes too large. The followers have no desired velocity, because they are
not informed of the way to go, and experience both frontal attraction and frontal
repulsion with their group mates, including the leader. Attraction acts against group
dispersion, and is needed especially in order for the crowd to follow the leader.
Instead, repulsion is intended for collision avoidance among group mates. The
sensory region for the attraction is so small that the tail of group does not feel the
leader ahead.

The group starts from the square-shaped distribution depicted in Fig. 2.24a, with
the leader in front. Then, after a transient (Fig. 2.24b), it assumes a horizontally
elongated shape (Fig. 2.24c) as a result of joint attractive and repulsive effects. With
no leader such a configuration would be an equilibrium, as attraction and repulsion
balance. However, as soon as the leader starts moving forward undisturbed,
pedestrians at the front, who can feel her directly, are attracted and move forward
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in turn. At the same time, pedestrians at the rear are attracted toward group mates
in front. This makes the information on the way to go travel backward across the
group, which ultimately moves forward as a whole (Fig. 2.24d).

It is worth stressing that at the macroscopic scale there is no counterpart of the
microscopic leader. This implies that the macroscopic velocity field is not affected
by the microscopic leader, therefore the macroscopic mass feels the latter only
through the microscopic velocity field.

2.7 Bibliographical Notes

Section 2.1 The idea of coupling microscopic and macroscopic scales into a
multiscale model has been developed in the paper by Cristiani et al. [48]. Here
we presented the theory in a simplified manner, without referring to the measure
theory. A full description of the model is given in Chap. 5.

Section 2.2 Simulations presented in Figs. 2.1 and 2.2 are from Cristiani
et al. [47]; those presented in Figs. 2.3 and 2.4 are instead from Cristiani
et al. [48].

Section 2.3 The terminology topological interactions, as opposed to metric ones,
has been borrowed from the papers by Ballerini et al. [11,12], which give experi-
mental evidence of topological interactions in animal groups (particularly flocks
of starlings). The authors also provide simulation results (cf. [11, Figure 4])
which are consistent with those we presented in Fig. 2.5. The interested reader is
further referred to the recent paper by Bellomo and Soler [18] for a kinetic model
of swarm implementing analogous ideas. The simulation presented in Fig. 2.5 is
from Cristiani et al. [47].

Section 2.4 The macroscopic simulation of the flow through a bottleneck
(Fig. 2.6), which is from Cristiani et al. [47], compares qualitatively well with
that obtained by Helbing et al. [85] by means of a microscopic model. The
multiscale version of the same simulation (Figs. 2.8 and 2.9) is from Cristiani
et al. [48]. The scenario of the subway station is thoroughly described in the
paper by Piccoli and Tosin [144] and further delved into in the paper by Bruno
et al. [27].

Section 2.5 Crossing flows have been addressed by several authors, mostly by
means of microscopic models. The models in the literature show in general a
good agreement between the experimental features of this kind of flow and their
predictions. In the papers by Helbing and Johansson [86], Helbing et al. [89] and
by Hoogendoorn and Daamen [98], Hoogendoorn et al. [99], which are a valuable
source of empirical information on pedestrian behavior, particular attention is
payed to typical patterns emerging in crossing pedestrian flows. The microscopic
models proposed by Helbing and Molnàr [88], Hoogendoorn and Bovy [95],
and Maury et al. [121] have also proved to be successful in reproducing such
experimental evidences. The simulations presented in Figs. 2.17–2.20 are from
Cristiani et al. [48], the others instead appear for the first time in this book.
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Section 2.6 The results about V-like and river-like formations are presented for the
first time in this book, and are motivated by the work by Moussaïd et al. [128].
The motion of social groups within a crowd has been little investigated in the
literature, compared to the motion of crowds composed of single individuals.
The simulation results in Moussaïd et al. [128] are qualitatively similar to those
presented here, although the former are obtained through a second order model,
based on social forces. It is of note that somewhat dual configurations can be
obtained by imposing within the social group a repulsion force against group
mates in front. The only difference is that in the latter case inverted-V formations
emerge, i.e., the vertex of the formation is in front of the group. Inverted-V
formations often appear in animal groups, for example in migrating geese. These
results strongly suggest that the main advantage of V-like formations is not the
aerodynamic effect, but instead the improvement of the communication between
individuals, see Cristiani et al. [46] and references therein. Finally, the simulation
of the group of tourists with guide (Fig. 2.24) is from Cristiani et al. [48].



Chapter 3
Psychological Insights

Abstract The aim of this chapter is to take another point of view in the modeling
of the crowd. Namely, here we report some approaches focusing on pedestrians as
individuals. Then it is of paramount importance to take into account the psycho-
logical aspects of the problem, distinguishing moving humans from “particles” or
even from self-propelled agents (e.g., birds). Such psychological components show
up both in the choice of walking strategies and preferences and in interaction rules
with other pedestrians. The focus will be mainly on investigations addressing the
behavior of the single pedestrian moving in an organized environment. Moreover,
we will discuss some models proposed by works in different fields, not limited
to psychology. However, the latter are more of qualitative nature, as opposed to
mathematically advanced ones discussed in Chaps. 4 and 5. Then we will deal with
experiments and measurements. In particular we will discuss how the experimental
setting influences results because of expected psychological bias. Also a view on the
most used measurement tools is included, since this may also affect the perception
of experiment participants. Finally, we will compare some experimental setting,
showing how sensitive to them measurements can be.

3.1 Wide Literatures

To deal with the various aspects of studying and modeling walking humans a
number of researchers from different fields wrote relevant papers, thus producing
a very wide literature. It is beyond the scope of this chapter to provide an exhaustive
compendium. We rather want to underline how the problem interested a few
different fields including:

• Applied Mathematics.
• Architecture.
• Biology.
• Cognitive Science.

E. Cristiani et al., Multiscale Modeling of Pedestrian Dynamics, MS&A 12,
DOI 10.1007/978-3-319-06620-2__3,
© Springer International Publishing Switzerland 2014
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• Medicine and Physical Therapy.
• Physics, such as particle systems and Statistical Mechanics.
• Psychology.
• Sociology.
• Transportation engineering.

In the following sections we will report results from various papers in different
domains, but always with the main intention of underlying specific characteristics
which are relative to the movement of the single pedestrian and focused on
psychological aspects. Notice that we do not exclude to deal with interactions
pedestrian-pedestrian if this involves social or other rules, which can not be captured
by pure mechanistic models. However, the results we want to discuss are not
confined to work by psychologists or cognitive scientists. As an example, let us
mention the early literature in Transportation Engineering.

Among the first studies and measures of pedestrian behavior are those by
transportation engineers. In particular empirical studies, such as in metro stations or
other areas, appeared since the 1950s. The interest of researchers was in producing
a systematic approach to comfort and safety of pedestrian facilities, introducing, for
instance, the concept of level-of-service, design elements and planning guidelines.

This literature is mainly based on measures of quantities such as average velocity
and total flow (number of pedestrian per unit of time). The main point was to
reach simple formulas relating such quantities to the size of the facility, so to
have explicit formulas to use in design and planning. An example is the relation
between the longitudinal space used and the average speed of pedestrians. However,
these approaches were not capturing the richness of dynamic features, as those
illustrated in Sect. 3.2.3. Still also this literature addressed questions related to
personal characteristics of pedestrians, such as purposes of walking, age, gender,
size and others, and characteristics of the trip, such as walking purpose, route
familiarity, presence of luggage and alike.

3.2 Specific Characteristics of Pedestrians

The aim of this section is to focus on emerging behavior of pedestrians which can
be justified only by social and psychological insight. As explained in Chap. 1, many
approaches are based on frameworks originally used in gas and fluid dynamics.
However, there are profound differences among gas particles and agents which are
able to measure the system state and take decisions. These observations apply to
many groups of agents such as animals or robots, however there are some specific
issues which are relevant only for pedestrians as human beings. Here we deal with
these issues.
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3.2.1 Cognitive Maps

When walking, humans use representations of the environment created by their
brains and known as cognitive maps. In other words, unless they use a map
or technological devices (such as GPS), humans make choices based on virtual
representations of the reality.

The creation of a cognitive map is mostly a subconscious process, based on
observations of the environment. The process of knowing the environment is
dynamic and information is continuously updated, taking into account the short term
and long term purposes of the walker. More precisely, the information is typically
gathered in two ways: Route-based knowledge, acquired during exploration of the
environment by performing travels, or survey knowledge, acquired by watching the
environment from a special position (e.g. elevated), consulting maps, photographs
and other information on the environment as, more recently, GPS equipped devices.
Most people develop a two dimensional knowledge of the environment even if
the route-based process is mainly one dimensional. The map creation process thus
integrates information coming from a number of different sources and at different
moments in time.

The most basic source of knowledge is thus sensorimotor apprehension of
information from the body or from the environment during locomotion. The direct
measurements of distances of environmental size is impossible from a single
location. Thus the elaboration process can be highly complicated and use a variety
of practices, such as triangulations, estimations from known locations and others.
Landmarks represent one of the key components of cognitive maps, maybe the
fundamental component, and are also the main tool toward constructing the maps.
More precisely, landmarks may be used as centroid of regions, nodes of a network
or as indicator of nearby point of interest. For instance, a very visible building may
serve as landmark for a specific city area.

Great differences show up among individuals in gaining environmental
knowledge. For route-based knowledge, the literature reports various differences in
the learning process, including gender based: Women apparently spend more time
scanning the sidewalk than men do. For survey knowledge, the process is highly
affected by the used mean and the way it is used. For instance the orientation of a
geographical map with respect to the observed environment influences the ability of
users to correctly use the information. Moreover, sufficient information should be
provided on the map to help identifying all the relevant locations. Regarding new
technology, it was observed that GPS users are highly ineffective with respect to
map users and even more with respect to experienced users, showing longer distance
traveled, slower motion, more stops and larger direction errors. In experiments GPS
users rated wayfinding tasks as highly difficult and more challenging than users
with direct knowledge of the environment.

Cognitive maps are most probably created in an Euclidean type metric space, at
least in many western countries, and consist of points, lines and areas. However,
cognitive maps do not satisfy the usual axioms of Euclidean geometry.
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Cognitive maps are influenced by many factors and can be substantially different
from a geographical map, in particular producing errors in the estimation of
distances and other measures of the environment.

The most common observed alterations of measures are usually called distortion
and fuzziness. Distortion is defined as the displacement of a location from its actual
position, while fuzziness measures the dispersion of the estimate of a location.
For instance one may locate a building entrance 100m away from the actual
location or provide an estimate within a 30m range. Various studies reported
systematic distortions in cognitive maps. In particular some common elements are
the following:

• Distances are generally overestimated.
• Shorter distances are exaggerated with respect to longer distances.
• Cognitive maps are usually rotated to align to landmark axes, such as major

transportation axes.
• Reference points (as home location) affect the estimation and also the retrieval

of information from cognitive maps.
• Fuzziness is higher for peripheral locations.

Also the errors are influenced by personal characteristics. In particular, one can
compose aggregate cognitive maps by collecting measures from groups with
common characteristics. It was observed that such aggregate maps are affected by
the group residences. For instance, people living in centrally located neighborhoods
are more likely to show higher level of aggregate precision with respect to directions,
rather then people living in peripheral neighborhoods. However, this major precision
is not occurring in measuring distances. Concluding, home and landmark locations
appear to be a major factor affecting the accuracy of aggregate cognitive maps, in
particular for the spatial distribution of errors.

3.2.2 Geographical and Social Features

Some researchers argued that a high degree of cooperation between pedestrians is
an intrinsic part of pedestrian behavior. Even more, that most of pedestrian flows
in large facilities would be impossible without a high level of cooperation. On this
regard, the tacit agreement to maintain walking lanes is one way to increase the
efficiency of the overall flows. This justified the study of various differences among
social rules observed when walking. Being social phenomena, such rules are also
differentiated geographically.

Let us start discussing geographic differences. It is reported that in central Europe
pedestrians have a slight tendency to walk on the right-hand side. This preference
is in line with the car driving rules. However, the same happens also in London,
while in Great Britain drive is on the left-hand side. Moreover in Japan both cars
and pedestrians stay on the left-hand side, while Korea provides last combinatorial
possibility with cars driving on right-hand side and pedestrian preferring left-hand
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side. However, the structure of the formed lanes is quite stable independently of the
preferred walk side. One has to notice that these preferences are reported in various
studies, but explicit and robust quantitative measurements are often lacking, thus
these preferences are rather observed on an anecdotal basis.

Notice also that the preference apparently shows up mostly when interacting
with other pedestrians and is less pronounced when individuals are walking
alone. The main reason is that such preferences, even if mild, are sufficient for
symmetry-breaking phenomena as observed in Chap. 2. It is still very debatable if
the efficiency of the resulting self-organized configuration is a cause or consequence
of the behavioral convention. Various arguments as reinforcement learning and
differential games models were proposed in favor of the first hypothesis. In this
respect, reinforcement learning is compatible with the appearance of different
preferences in different geographical areas. The main reasoning for differential
games goes as follows: Initially individuals would split equally among left and right
when interacting. However, when random deviations occur, it is more probable that
the subsequent choices are biased leading to an increasingly marked preference.
Apparently this argument should predict that lanes in high crowding interacting
flows should appear on both sides and this is somehow confirmed by experiments.
We will go back on this issue of handiness in pedestrian routes in Sect. 3.4.3.

For what concerns social behavior, generally speaking groups are usually granted
more space than single pedestrians. Some studies also report gender differences,
claiming that more space is usually granted to males. Other social differences
include the appearance, with studies reporting of higher distance to well dressed
women than sloppy dressed. The latter effect was referred to as power of beauty,
however it seems more linked to social reputation because of the dressing style. Also
it was observed that persons and small groups look for larger groups and various
other studies addressed social, gender and even racial characteristics. If caution is
in order for the geographical differences and habits, it is even more imperative for
social and other differences. Along this line, it was proposed that in most of cases
manoeuvrability may indeed be the main reason for observed choices with very
minor bias due to characteristics of the interacting pedestrians.

3.2.3 Self-Organization and Re-organization

An effect of the highly complex behavioral rules of interaction among pedestrians
is the appearance of the so-called self-organization phenomena, see Sect. 1.1.2. The
superposition of the interaction rules gives rise to special geometric characteristics
of the position and dynamics of the whole group, without centralized controllers
or organized agreement (such as by signs or verbal alerts) which act on purpose
for that. As for the cognitive maps, most interaction decisions must happen at a
subconscious level, rather than being high level strategic decisions. This is probably
one of the reasons why even relatively simple models can reproduce them.
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Self-organization is observed in a number of different fields, including animal
groups. In this section we want to stress how the special features of pedestrian
cognitive aspects can further trigger the phenomenon towards dynamical advantages
for the whole group on the move.

On the other side, we will also point out some unwanted situations, mainly
due to panic (or other non normal conditions). However, beside reporting various
self-organized configurations, we want also to briefly address the ability to re-
organize the group in case of need.

Among various self-organization phenomena, the mostly relevant and observed
ones are the following:

• Lane formation in unidirectional flows.
• Walking couples, clusters and V’s.
• Capacity drops at bottlenecks.
• Clogging and arches in stampedes and panic situations.
• Slower-is-faster effect and Braess’ paradox for obstacles.
• Zipper configurations at bottlenecks.
• Coexisting lanes formation in opposite flows.
• Circular flows at cross intersections.
• Intermittent flows (or traffic light effect) at shared bottlenecks.

Many of the above phenomena occur mainly when the crowd density is
sufficiently high. In particular, beside lanes of walking pedestrians, one may also
observe shock-like waves, i.e., queue formations where the end of the queue is
moving backwards (the latter are well accepted in vehicular traffic literature).

Some specific formations were also noticed when walking in groups. Couples
walking together are particularly common, while small groups tend to dispose
themselves in a V-like formation. More precisely, the shape is that of a V if observed
from above with pedestrians moving upward in the camera image. The terminology
“(inverted) V” comes from comparison with migrating birds, which also display a
V formation but in opposite position with respect to the flying direction.

In case of flows having opposite walking directions, many researchers observed
the formation of alternate lanes of pedestrian having the same direction of walk. The
case of pedestrian crossing roads is the most commonly studied. This lane formation
phenomenon diminishes the probability of encounters among pedestrian having
opposite directions, thus improving the overall efficiency of both flows. In particular
the walking velocity increases by removing breaking and avoidance manoeuvres.
Such self-organization happens without verbal communication. Moreover, the
presence of obstacles, such as columns, favors the formation of lanes, with the side
preference showing up more consistently.

Bottlenecks typically produce capacity drops in many type of flows including
vehicular ones. If the density exceeds a given threshold, then the flow starts to
decrease up to possibly reaching a stuck. Capacity dropping in pedestrian flows
at bottlenecks, such as narrowing of aisles, was observed but not so neatly as in the
case of vehicular traffic. There are at least three reasons which could explain this:



3.2 Specific Characteristics of Pedestrians 59

1. The difficulty in measuring pedestrian flows (we will go back to this in Sect. 3.4).
2. The capability of pedestrians to re-organize so as to mitigate the drop (see the

zipper configuration below).
3. The discomfort of sharing space with other pedestrians, which prevents from

creating too high densities in normal conditions.

These three reasons do not apply to the case of stampedes and panic situations.
If people feel in danger in a given environment and consider the egress the only
way to be safe, then they start to rush to exits creating cloggings. In this situation
the flow is completely disorganized (somehow turbulent) and the capacity drop of
exits is dramatic. In some extreme cases exits could be completely blocked with
no pedestrian flowing through even if the area after the exit is completely empty.
This situation occurs when pedestrian are trying to use the exit at the same time and
the precise configuration could be explained only by a three dimensional model of
pedestrian bodies. It is referred to also as a slower-is-faster effect, in the sense that a
lowering of rush to the exit would indeed improve the functioning of the exit itself.
Moreover, in these circumstances, pedestrians may fall to the floor, thus completely
changing the scenario and, unfortunately, often giving rise to casualties. On the other
side, two dimensional models and data report the formation of arches: Semi-circular
shapes before the exit.

Going back to normal conditions, it was observed that bottleneck capacity
depends on the specific geometry. The problem of optimizing the shape of a
given bottleneck site is highly nontrivial, since complete quantitative models for
the interactions pedestrian-environment do not take into account all cognitive and
re-organization phenomena. However, some researchers suggested funnel-shaped
aisles as a way to improve the capacity.

It is often agreed that obstacles on the way to exit and near doors can be of
help in easing the flow. This is sometimes referred to as the Braess’ paradox, for
the similarities with the paradox observed in vehicular traffic. (The latter consists
in the fact that adding links to networks, the overall equilibrium traffic flow may
lower; So, formulated inversely, removing space can improve the flow.) In particular,
columns serve this purpose well and the precise consequences depend on the
specific positions with respect to exits. The effect is similar to wave breakers with
crowd pressure somehow absorbed by the obstacle. Obviously, the obstacles are
functioning as long as they do not create a major obstruction to the natural flow.

Another way of improving the flow through bottlenecks occurs naturally because
of the ability of pedestrians to use space in a zipper like fashion. Representing
the area occupied by a pedestrian as an ellipse, the obtained configuration has the
same shape of a zipper with pedestrian areas representing teeth, see Fig. 3.1. More
precisely, two lanes are formed with pedestrians walking diagonally behind each
other. Geometrically this allows a better use of space. This is opposed to the situation
of large sites, where pedestrians tend to maximize the distance from walls. The
ability of pedestrians to quickly self-organize in these shapes affects the capacity
of the bottleneck and so the possible delays. Moreover, the flow happens to be
proportional to the bottleneck width, starting from the minimal size for allowing the
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Fig. 3.1 A graphical
representation of the zipper
effect

zipper effect and consistently for different kinds of bottleneck and entering flow. An
anticipation effect was also observed, i.e. in the vicinity of the bottleneck, but before
it, pedestrians tend to dispose themselves so as to occupy only a space equivalent to
the dimension of the bottleneck, with the crowd spreading out upstream. While some
researchers argued that appropriate geometries could then avoid or reduce capacity
drops, others showed that the zipper effect is so strong that the exact geometry of
the bottleneck has only a minor influence on the flow. Extrapolating from these
studies, different relations among the flow and the crowd density were proposed,
but a general agreement on a precise formulation is still lacking.

3.3 Models for the Single Pedestrian

Here we review some possible approaches in modeling the single pedestrian. In
most of works proposing advanced modeling of crowd dynamics, the motion of the
single pedestrian is simply reduced to determining a desired velocity and prescribing
a dynamics with velocity relaxing to the preferred one. On the other side, in
psychological literature and some of the mathematics, physics, and engineering
ones, models are available for the strategy of the single pedestrian, relying on a
number of objective functions.

3.3.1 The 2/3 Power Law and Other Empirical Laws

Some researchers, mainly in the fields of cognitive sciences and psychology, noticed
that various human movements tend to verify the so called 2=3 (two third) power
law. More precisely, various measurements confirmed that velocity is proportional
to curvature to the power 2=3. This gives rise to specific geometric properties of
the trajectories followed by these movements or, better to say, to the speed at which
humans perform some given geometric curves.

A number of papers were devoted to the kinematic of handwriting. The power
law being verified by simple and complicate curves, such as letters and pictures,
performed by people when writing and drawing. Some researchers found that the
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same power law is respected, at least to some extent, also by the movements of
pedestrians.

One has to notice that the 2=3 power law seems to be ubiquitous in human
movements or at least to be a good predictor in many experimental conditions.
However, measurements are not always so precise and the risk of a false myth is
not negligible. In particular, a few experiments have shown that the law does not
apply to all graphic movements. The law was indeed mainly verified for elliptic
movements, while for complex movements segmentation is necessary. The latter
introduce some arbitrariness in the way quantities are measured. Some researchers
proposed specific conditions under which the law would be satisfied.

The cognitive origin of the 2=3 power law is not known. Some researchers argued
that it is of mechanistic origin, other proposed it as a decision taken at the level of
central nervous systems. There are some evidence for the first argument.

3.3.2 Models of Path Choice

There are a wide number of models that were proposed for the choice of paths
made by pedestrian, mainly when walking in structured environment but free of
other pedestrians or moving obstacles. Here we will not discuss more quantitative
models, on the contrary we report on more qualitative approaches.

It is interesting to notice that a large number of criteria were proposed as
possible explanation of some path choice. Among others, we mention the following
(clustered by choice criteria):

• Optimization criteria: Shortest path, least time, shortest leg first, longest leg first,
straighter leg first.

• Sensational criteria: Most scenic, most aesthetic, clearest.
• Comfort criteria: Fewest turn, minimal angular deviation, most comfortable.
• Knowledge criteria: Most known, first noticed, different from previously taken.

See Fig. 3.2 for a pictorial illustration of some of them.
It is interesting to notice that some of these criteria are often in contrast and

some are effectively one the opposite of the other. Thus it is difficult to obtain
a clear picture of the most used or valid criteria, however, the set of criteria can
be considered in an organized modeling effort. One has to notice that in every
day walking there are a number of additional criteria one may indeed consider,
such as visibility, chance of accidents, patrol by authorities, safety in general and
other. For instance it was shown that criteria such as longest leg first or minimal
angular deviation depends on the visibility of the final goal. This renders even more
complicated a clarification of the main guiding causes for path choice.

The problem of choosing a path with multiple destinations was also addressed in
a number of papers. Regarding these studies, researchers noticed that closed paths
(with final destination equal to initial point) tended to be of circular type, that is
corresponding to the boundary of the convex hull of the given multiple destinations
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Fig. 3.2 Some criteria by which single pedestrians choose their path

as points on the plane. On the other side, more local strategy as choosing the nearest
neighbors failed to explain results. Most experiments were run by showing a map to
individuals, thus may be affected by the experimental setting, see also Sect. 3.4.

Some researchers pushed these criteria to a more quantitative level. For instance,
critical decisions are obviously taken at junctions and crossing, thus can be
measured more precisely. A strong correlation was noticed among these decisions
and angles of incidence of roads at junctions. In particular, individuals tend to keep
the linearity of their path or, as listed above, to minimize the angular deviations. The
discussion reported in a number of studies does not give rise to certain conclusions,
but rather expresses the difficulty of a simple model to take into account the complex
process of decision making operated by pedestrians.

3.4 Experimental Settings and Measurements

The knowledge about pedestrian walking is achieved by experiments. Because of
the cognitive aspect of the decision making processes during walking, it is of
paramount importance to take into account the experimental setting and to critically
analyze experimental results. In particular the presence of psychological bias may
affect strongly the observed results. It is also known that cultural influences and
the composition of pedestrian crowds in terms of age, gender, and trip purpose can
significantly influence pedestrian behavior.
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Despite this evidence, a large majority of experimental studies are performed in
settings where the biases can be very important if not dramatic. Some researchers
reach the conclusion that values of fundamental variables, measured in laboratory
experiments, simply cannot be used for design recommendation, so even less for
management. On the other side, some qualitative results of experiments can be used
to increase the general understanding of crowd dynamics, when a large number of
pedestrians gives rise to complex phenomena.

3.4.1 Experimental Setting

The most used experimental settings are the following:

• Interviews.
• Virtual reality.
• Artificial environments.
• Natural environments.

In the following we briefly discuss the different experimental settings.

3.4.1.1 Interviews

Some aspects of the pedestrian behavior in route navigation and the formation of
cognitive maps can be obtained by interviews. Generally speaking, individuals will
be exposed to a real environment or a picture/map and will be asked about choices
they would perform in that environment. Since it is quite well agreed that the process
of walking and also cognitive map construction happen at unconscious level, there
are serious limitation of this tool. Other care should be taken when presenting a
map to individuals, because of the significant differences among geographical and
cognitive maps, see Sect. 3.2.1.

3.4.1.2 Virtual Reality

Virtual reality is extensively used, especially in psychological and cognitive science
literature. The main reasons are the convenience of the experimental setting and the
low cost.

Virtual reality allows to test many different landscapes and environments
via graphical software. This allows to test many different hypotheses with a
considerably simple modification of the experiments. We will not enter the
difficult discussion of the differences between the perceptions of artificial and
real environments, but a number of results confirm the validity of this approach, at
least for some specific hypothesis testing. Still psychological bias is a serious risk.
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In this direction, specialized websites, such as experimental or mechanical
turks, provide new extensive tools for performing experiments in virtual setting.
Researchers however usually need to somehow filter the information.

3.4.1.3 Artificial Environments

Real environments may present major difficulties for running large size experiments,
with many pedestrians involved, or for using advanced tech instruments. In par-
ticular, it is hard to find suitable places allowing one to observe both dense and
undisturbed pedestrian flows, while, on the other side, cameras, antennas, sensors
and other devices may not be easily placed outdoor. These are the main reason
why many researchers resort to artificial environments. Usually lab space equipped
with cameras and other devices and with features resembling real structured
environments.

To reduce the psychological bias, researchers do not communicate to the subjects
the experiment purpose and the expected results. Often participants are given time
to familiarize with experimental setup, so as to reproduce as closely as possible the
every day conditions. Moreover, sometimes pedestrians are divided into groups with
different instructions on routes and goals so as to mimic a real life situation.

In large crowd experiments some care is also taken on the composition of the
crowd in terms of age and gender. In particular researchers try to have population
groups which would be statistically similar to those of the residents.

Some experiments even tried to reproduce panic situation, when pedestrians are
urged to exit and break the normal interaction rules.

Also in this case some major psychological bias are unavoidable. For instance,
in artificial environment doors may be replaced by frames and aisles by moving
barriers, providing a completely artificial perception experience and surely affecting
cognitive maps.

In some cases pedestrians are provided with distinction signs such as numbers,
tags, coloured hats or other. In other cases pedestrians are equipped with various
technological devices, which can range from small detectors to complicated
equipments.

In experiments involving a large number of pedestrians, groups are formed and
a group leader is chosen. The role of the leader is to guide the group through the
experiment following precise instructions provided by researchers. In particular
the leader also takes care of the timing of group movements. Clearly, this departs
strongly from every day life conditions.

On the same line, one has to notice that large experiments are typically performed
once or in a very limited time range. This probably causes a sensitive limitation in
the variability of crowd behavior.



3.4 Experimental Settings and Measurements 65

3.4.1.4 Natural Environments

There is a limited number of studies using surveillance cameras placed in
transportation sites or other surveilled areas (opposed to cameras placed in lab
experiments as for artificial environments). In this case the behavior of pedestrians
is directly observed in natural environment, thus overcoming the main difficulties
of possible psychological bias.

The setting brings obvious advantages in testing specific hypotheses and in
measuring pedestrian behavior. Measurements can be performed in a similar way as
for artificial environment if, in that setting, no devices were applied to participants
bodies.

With the increasing number of surveillance cameras available, we expect this to
become an increasingly important instrument for experiments.

3.4.2 Measurements

Beside the experimental setting, researchers need to design or use tools for
measuring quantities which are relevant to describe pedestrian motions. The first
task is to decide which quantities must and can be measured. These are strictly
related to the final purpose of experiments, thus can be focused on macroscopic
quantities, such as flow of a crowd in motion, microscopic quantities, such as
discrete choice of pedestrians at junctions, or even nanoscopic quantities, such as
posture of the pedestrian.

On the other side, among the most used measurement tools we mention the
following:

• Pictures: manual counting or image analysis.
• Videos cameras: Manual measurements and image analysis.
• GPS sensors.
• Accelerometers.
• Infrared sensors.
• Bluetooth antennas.

We now briefly discuss the different tools and measurements. From pictures
researchers can measure the position of pedestrian at a given time instant or can
identify trails of pedestrians (such as on snow or on grass field). Images can be used
either to count manually, for instance the number of pedestrians in a given area, or
to process the image via ad hoc software. Sometimes pictures are collected in series
to provide a view of a whole trajectory of a given pedestrian. The images are often
processed manually, thus rendering the approach very labor-intensive.
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Similarly videos are used both to directly observe and measure a phenomenon
or to be processed via image analysis. A number of different approaches may be
used in the latter case. For instance, researchers designed elaboration composed
of various steps, including advanced mathematical techniques such as Kalman
filter and others. In order to facilitate the analysis, often participants are wearing
specific clothes (colored hats) or objects over clothes (such as ping-pong balls). This
allows the tracking of whole trajectories, thus giving a dynamic information. Such
trajectories can be determined at a very high level of precision, often at a resolution
of centimeters and fraction of seconds. In turn this provides a number of measurable
quantities, such as velocity, acceleration, curvature of the trajectory, : : :

GPS sensors and other “probes” can be used to determine position and velocity
of pedestrians equipped with such devices. The technique is useful also to infer the
properties of a whole crowd from sampling a limited number of individuals.

Accelerometers (sometimes included in mobile phone devices) provide
information at the nanoscale, producing a signal related to the body movements
of a single pedestrian. Then appropriate signal analysis techniques must be applied,
sometimes combined with machine learning in order to determine the characteristics
of gait and thus infer other information. Here the literature includes medical studies
related to both the physiological aspect of walking and the need of measuring
energy consumption.

New types of sensors are nowadays used to replace manual counting, such as
infrared sensors, measuring the heat energy of infrared radiation naturally emitted
by pedestrians, and Bluetooth antennas to detect wireless communicating devices,
many of which are becoming ubiquitous (e.g., smart phones).

3.4.3 Comparison of Different Experimental Settings

As already pointed out, researchers are aware of the differences which are expected
to arise naturally between artificial and virtual environments on one side and
the natural one on the other side. This issue seriously limits the reliability of
precise measures, still leaving some validity for the observation of some aggregate
phenomena. To further illustrate this problem, we report some results of direct
observations and use of surveillance cameras from a project performed on the
Camden Campus of Rutgers – The State University of New Jersey.

Thousands of students walk on the Campus area of Rutgers – Camden every day.
The area is equipped with surveillance cameras and the public is informed by signs.
However, students, faculty and staff walk on the Campus area every day during the
academic year, thus they are not expected to pay much attention to the cameras
(which are placed in elevated spots) or to exhibit unusual behavior because of that.

A site was identified with a path presenting a turn with an angle of approximately
135ı and surrounded by grass, see Fig. 3.3. Pedestrians walking in the path were
observed to cut naturally the angle, thus finding themselves on the left part of the
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Fig. 3.3 Experimental
setting in campus area of
Rutgers-Camden
( c�Benedetto Piccoli)

trail. This is consistent with various theories, including the 2=3 power law and the
minimal angular deviation. On the other side, keeping the left is in contrast with the
supposed right-hand preference in United States, thus the experiments intended to
determine which effect was the dominant one.

To have simple measurements, an obstacle (high orange cone) was placed just
after the corner at a distance of 406 cm (corresponding to two pavement tiles) in
the center of the path. Thus pedestrians were forced to choose to pass to the left
or the right of the obstacle. The interpretation is that passing to the left would be
compatible with various path choice models, while passing to the right with the
social agreement on keeping the right.

The experiment was performed in three settings:

• Setting A. Pedestrians were observed while walking on the path, not interacting
with any other pedestrian and not carrying heavy objects. They were not aware
of being observed.

• Setting B. Pedestrians were informed that they were going to be observed while
walking but not informed about which measurements were going to be taken.

• Setting C. Pedestrians walking on the path were stopped and interviewed about
the choice they would have made with respect to passing the obstacle.

All the other conditions of the experiments were identical and for each setting more
than 200 persons were involved in the experiment. The results were the following:

• Setting A. 27% of pedestrians walked to the right of the obstacle.
• Setting B. 52% of pedestrians walked to the right of the obstacle.
• Setting C. 62% of pedestrians walked to the right of the obstacle.

The results show the strong influence of the experimental setting and the importance
of the psychological bias, well beyond possible random fluctuations. Moreover, it
was confirmed by other measurements in similar settings.
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3.5 Bibliographical Notes

Section 3.1 As mentioned, a complete account of the various literatures is beyond
the scope of this monograph, the same holding true also for this bibliographical
notes. We can distinguish among two broad categories, the more quantitative
(e.g., by engineers, physicists, biologists, some of the psychologists, etc.) and the
more qualitative (e.g., by sociologists, architects, and some of the psychologists).
A quite extensive account of the contributions from physicists and the early ones
from transportation engineers can be found in Daamen and Hoogendoorn [53],
Helbing et al. [84], Papadimitriou et al. [137]. The early work in transportation
engineering are probably among the first in the quantitative category, see
Fruin [72], Hankin and Wright [79], Navin and Wheeler [129]. In particular,
Fruin [72] is among the first discussing a concept of level of service, thus asking
for advanced design of pedestrian facilities. For other papers we refer the reader
to the list of references in Daamen and Hoogendoorn [53], Helbing et al. [84],
Papadimitriou et al. [137]. On the more qualitative side, we may cite few works
by sociologists and psychologists, as Dabbs jr. and Stokes III [54], Goffman [74],
Golson and Dabbs [76], Wolff [172].

Section 3.2.1 The discussion of cognitive maps was mainly inspired by
Golledge [75], Ishikawa and Montello [104], Lloyd and Heivly [119],
Montello [125]. For a discussion on the use of geographical maps see Levine
et al. [116, 117]. For experiments with GPS see Ishikawa et al. [103].

Section 3.2.2 Information about geographical and social issues can be found in
Daamen and Hoogendoorn [53], Helbing et al. [84] and references therein. The
distortion of maps related to geographical position of homes was pointed out in
Lloyd and Heivly [119]. Discussion about sociological issues can be found in
Dabbs jr. and Stokes III [54], Goffman [74].

Section 3.2.3 The phenomenon of self-organization is well explained and
reported in Helbing et al. [84]. Specific issues about bottlenecks and
re-organization can be found in Cepolina and Tyler [34], Daamen and
Hoogendoorn [53], Schadschneider and Seyfried [156], Seyfried et al. [157].
See also Sect. 1.1.2 of this book.

Section 3.3.1 For general discussion about 2=3 power law we refer to Viviani and
Flash [168], while for pedestrian locomotion to Vieilledent et al. [165]. See also
Plamondon and Guerfali [146] and Schaal and Sternard [155] for a discussion
about the origin of such a law and additional critical analysis.

Section 3.3.2 An extensive discussion of path choice can be found in
Golledge [75], while a specific discussion about angular deviations can be
found in Dalton [56]. For multiple destinations see also Vickers et al. [163].

Section 3.4 Most of the above references are about experiments performed in
different settings. For artificial environment see in particular Daamen and
Hoogendoorn [53], Helbing et al. [84]. The importance of introducing cognitive
aspects in quantitative modeling was also pointed out recently in Moussaïd
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et al. [127]. One of the few studies using surveillance cameras is Cepolina and
Tyler [34].

Section 3.4.2 Video elaboration techniques are explained in Hoogendoorn
et al. [99], Willis et al. [171]. For the use of probes see Kamareddine and
Hughes [108], Koshak and Fouda [111]. Accelerometers were used to determine
gaits for instance in Ailisto et al. [2], Aminian et al. [7] and to infer crowd
dynamics in Roggen et al. [152]. For infrared sensors see Ozbay et al. [136],
while for Bluetooth see O’Neill et al. [135].
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Chapter 4
An Overview of the Modeling of Crowd
Dynamics

Abstract In this chapter we review some of the most important models at
microscopic, macroscopic, and mesoscopic scale, which, in our opinion, represent
milestones in their respective fields or are of particular interest for this book. We also
report some models for rational pedestrians, which make use of techniques from
optimal control theory. For the sake of convenience, we present all models in two
space dimensions.

4.1 Microscopic Models

The description of the pedestrian dynamics at the microscopic scale is based on the
assumption that every single person can be tracked individually, and her trajectory
can be forecast. Microscopic models can be differential, if they are based on ordinary
differential equations, or nondifferential, otherwise.

4.1.1 Force Models

Force models are second order differential models. In general, a two-dimensional
force model for N pedestrians is constituted by a system of 4N scalar ordinary
differential equations. The k-th pedestrian is described by means of her time-
dependent positionXk.t/ 2 R

2 and velocity V k.t/ 2 R
2. The model has a structure

analogous to that of Newtonian dynamics, i.e.,

( PXk.t/ D V k.t/

PV k.t/ D F k.t; X1; : : : ; XN ; V 1; : : : ; V N /;
k D 1; : : : ; N: (4.1)

The equation above is complemented with suitable initial conditions for the
positionsXk.0/ and velocities V k.0/, for k D 1; : : : ; N .

E. Cristiani et al., Multiscale Modeling of Pedestrian Dynamics, MS&A 12,
DOI 10.1007/978-3-319-06620-2__4,
© Springer International Publishing Switzerland 2014
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Force models are based on the assumption that acceleration and deceleration of
pedestrians are the reaction to the perceived information that they obtain about
the environment. Although the environment does not really exert any force on
pedestrians, they are motivated to act in a certain way by the environment, so that
one can say that pedestrians actually act as if they were subject to external forces.

Force models are characterized by different choices of F k . Some models assume
pedestrians to be volumeless points, while other assume, more realistically, that
pedestrians occupy a finite volume. In the former case, some issues can arise.
For example, implementations of the repulsive force between pedestrians require
additional elements to guarantee realistic behavior, especially in high density
situations, since strong overlapping of pedestrians or backward/high velocities occur
as artifacts of the force-based description.

An important assumption of force models is that the total force exerted on the
pedestrian is simply given by the sum of all forces, as in classical mechanics.
This assumption often leads to undesired effects. For example, in some situations
pedestrians perform repetitive backwards and forwards movement due to e.g. high
repulsive forces. In real situations pedestrians either stop, when they evaluate the
situation as blocked, or change direction.

Finally, we mention that these models contain many free parameters that must be
adequately calibrated to achieve a good quantitative description.

4.1.1.1 Magnetic Force Model

The magnetic force model assumes that pedestrians behave as magnets or electri-
cally charged particles. Any kind of attractive/repulsive point, including pedestrians
themselves, generate a field in the surrounding space. Then, pedestrians simply
move in the space following the Coulomb’s law

F k.t/ D
X

P

CqkqP
Xk.t/ � XP .t/
ˇ
ˇXk.t/ � XP .t/

ˇ
ˇ3
; (4.2)

where C is a constant, qk is the “charge” of pedestrian k, and P is the interacting
point located at XP with “charge” qP . Each pedestrian is a positive point source
(q > 0) so that they are repulsed from each other. Columns and obstacles in general
are positive point source as well. Instead, targets are negative point sources. Walls
are modeled as a number of positive point sources on a straight line at regular
intervals. A magnetic dipole is used to conduct pedestrians through a gate.

If pedestrians are not assumed to be volumeless, overlapping can occur. To intro-
duce collision avoidance features, the model considers a body zone, which is a
space that cannot be occupied by anything else than the pedestrian herself. The
model considers also a judge zone, which is the zone in which the influence of
other pedestrians is taken into account (cf. the definition of sensory region given
in Sect. 1.1.1). Both body and judge zone are circular, the former being centered



4.1 Microscopic Models 75

at the individual, while the latter being shifted ahead in the direction of motion.
At each time step, the positions of pedestrians are updated according to the motion
equation (4.1)–(4.2), then, if an overlap occurred, the position is corrected as
the nearest admissible position. This is done for both pedestrian-pedestrian and
pedestrian-structure interactions.

The magnetic force model is able to reproduce quite well the group behavior
(crossing flow of two or more pedestrians with or without columns, crossing at
intersections, passage through a bottleneck, etc.). It is also able to catch self-
organizing lane formation in crossing groups of pedestrians.

4.1.1.2 Social Force Model

In the social force model the total force exerted on a pedestrian is

F k D F k
d C

X

h¤k
F kh

r C
X

A

F kA
a C

X

Q

F kQ
r C �k; (4.3)

where the terms in the above equation are defined and discussed in the following.
Each pedestrian has a desired direction of motion vkd . This velocity depends on

the geometry of the domain and takes into account the desired final destination.
The presence of fixed obstacles can be also taken into account. The trajectory of a
single undisturbed pedestrian is simply given by the solution of PXk.t/ D vkd.X

k/.
A deviation of the actual velocity from the desired velocity due to whatever cause
leads to a tendency to restore the desired velocity with a certain relaxation time � .
This gives an acceleration term of the form

F k
d .X

k; V k/ D vkd.X
k/� V k

�
:

The motion of pedestrians is influenced by other pedestrians. In particular,
they try to keep a certain distance from each other, since they feel increasingly
uncomfortable the closer they get to a strange person, and, in any case, they try
to avoid collisions. This results in a repulsive force F kh

r which is a monotonic
decreasing function of the distance of two pedestrians k and h. This function can
also depend on the velocities V k.t/ and V h.t/ and can take into account the fact
that pedestrians require more space in the direction of motion. A simple choice is
given by an exponential decay of the repulsive force,

F kh
r .jXk �Xhj/ D �C1 exp�jX

k � Xhj
C2

(4.4)

where C1, C2 are two parameters of the model. The presence of a sensory region
S .Xk.t// (see Sect. 1.1.1) can be included modifying the above definition. In
particular, a dependence on the mutual position of the k-th and the h-th pedestrian
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can be introduced, in order to take into account whether pedestrian h is seen by
pedestrian k.

Pedestrians are sometimes attracted to other pedestrians (friends, tourist guide,
etc.) or objects. If A is a point of interest located at XA (it can coincide with
a pedestrian’s position), one can define the attractive force F kA

a as a monotonic
increasing function of the distance jXk�XAj. Again, it can be weighted taking into
account the sensory region.

Pedestrians avoid obstacles (walls, columns, etc.). If Q is an obstacle, an ad hoc
repulsive force F kQ

r can be introduced. It can be exponentially decreasing with
respect to the distance between the pedestrian and the nearest point XQ of the
obstacle.

Finally, individual random fluctuation reflecting unsystematic behavioral varia-
tions are modeled by adding a random variable �k .

Panic conditions can be also modeled by adding proper social forces, and
assuming that pedestrians have a finite volume. In such a case, physical interaction
forces come into play when pedestrians get so close to each other that they have
physical contact. One can add a body force counteracting body compression and a
sliding friction force preventing relative tangential motion.

The social force model describes quite realistically some observed phenomena.
It allows one to reproduce various spatio-temporal patterns that are not externally
prescribed by, e.g., traffic signs, laws, or behavioral conventions. Instead, patterns
emerge due to the nonlinear interactions of pedestrians and are often caused by
a spontaneous break of symmetry. Among the self-organized patters which can
be reproduced, we mention the lane formation, the oscillations at bottlenecks (or
traffic light effect) and arching behind an exit door. In panic conditions, simulations
also show some paradoxical but realistic effects like the freezing-by-heating effect
(people continuously and irrationally change direction finally keeping their position
practically unchanged) and the faster-is-slower effect (cf. the Braess’ paradox).

4.1.1.3 Centrifugal Force Model

The centrifugal force model differs from the social force model mainly in the
definition of the repulsive force (4.4). In order to introduce the new repulsive force,
let us define

ekh D Xh �Xk

ˇ̌
Xh �Xk

ˇ̌

and aC D 1
2
.aC jaj/, for every a 2 R. Then, we have

F kh
r D �mk .V

k � ekh/C
ˇ̌
V k
ˇ̌ Œ..V k � V h/ � ekh/C�2

1
ˇ̌
Xh �Xk

ˇ̌ekh
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wheremk is the mass of the k-th pedestrian. The term

.V k � ekh/C

plays the role of the visual field, vanishing the effects of any pedestrian behind the
considered one, while the term

..V k � V h/ � ekh/C

is introduced to translate the fact that if pedestrian h walks faster than pedestrian
k, there are no repulsive effects, even if pedestrian h is ahead of and visible by
pedestrian k. Finally, the exponential term in (4.4) is substituted by

1
ˇ
ˇXh �Xk

ˇ
ˇ :

Centrifugal force model assumes that pedestrians are not just points, rather they
occupy a certain volume. Then, a collision avoidance technique is employed in
addition to the basic model to deal with the problem of overlapping pedestrians.
The technique is rather simple and can be described as follows: First, it is assumed
that collision has not occurred and the pedestrian’s position is updated. Then, it is
detected whether a collision has occurred. If this is the case, the pedestrian is moved
back to the original position and then, among the admissible velocities, the velocity
closest to the original one is found. If there is no way to move forward and a step
back would be required, the pedestrian just stops.

4.1.2 Maury and Venel’s Model

The Maury and Venel’s model is a collision avoidance first order differential model
described by 2N scalar ordinary differential equations

PXk.t/ D V k.t; X1; : : : ; XN /; k D 1; : : : ; N: (4.5)

Here Xk.t/ is the position of the k-th pedestrian at time t . In this case the velocity
of pedestrians is assigned directly, without referring to their acceleration. The
model assumes pedestrians to be circular-shaped, and proposes a method to avoid
contacts among them, i.e., pedestrians are imposed to never collide. For simplicity,
assume that it is given a pedestrian-independent desired velocity field vd. Then, each
pedestrian moves with a velocity V k which corresponds to the projection of vd.X

k/

on a space of admissible velocities. This space takes into account the fact that the
pedestrians cannot collide with each other.

Let us define the vectors

X WD .X1; : : : ; XN /; and Vd.X/ WD .vd.X
1/; : : : ; vd.X

N //:
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Moreover, let us denote by r1; : : : ; rN the radii of the N pedestrians and define the
distance between two agents as

d kh.X/ WD jXk �Xhj � rk � rh:

The model imposes that the vector X.t/ satisfies the constraint

X.t/ 2 Q0 WD fY 2 R
2N W d kh.Y / � 0; 8 k; h; k ¤ hg; 8 t > 0:

Let us define the cone of admissible velocities as

C.X/ WD
(

W 2 R
2N W d kh.X/ D 0 )

W k � X
k �Xh

ˇ
ˇXk �Xh

ˇ
ˇ CW

h � X
h � Xk

ˇ
ˇXk �Xh

ˇ
ˇ � 0; 8 k < h

)

:

Note that the set C.X/ is defined in a such a way that whenever two pedestrians
k and h touch each other, their actual (admissible) velocities will make their mutual
distance d kh immediately increase, thus avoiding hard collision. The dynamics of
all pedestrians are then given by

PX.t/ D PC.X/.Vd.X// k D 1; : : : ; N

where PC.X/ is the projection operator on the set C.X/.
A macroscopic version of this model was also proposed, see Sect. 4.2.4.

4.1.3 Cellular Automata Models

Cellular Automata (CA) models are time- and space-discrete microscopic models
which do not rely on differential equations. The domain of computation is dis-
cretized by means of a mesh. Each cell C of the mesh is associated to a certain
status, usually on or off, that changes at each time step according to the status of the
neighboring cells. CA models for pedestrian flow usually assume that each cell can
be either empty (off) or occupied by a single pedestrian (on).

The attractiveness of using CA models is that the interactions of the entities
are based on intuitively understandable behavioral rules which are more easily
translated in algorithms than in mathematical functions. As a consequence, rules can
be given “by words” and can be understood by people with no mathematical back-
ground. They are easily implemented on computers, and compared to differential
models, run very fast. This last property allows one to run large-scale simulations
otherwise intractable. As a drawback, we mention that these models are often very
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simple and do not allow a theoretical a priori analysis of their properties. Indeed, it
is difficult going further than a purely algorithmic level of the discussion.

Each CA model is characterized by its matrix of preferences. Assume for
simplicity that each pedestrian is allowed to move one cell away only. In this case,
one can associate to each cell C a 3 	 3 matrix MC , whose entries represent the
probabilities to move in one of the eight neighboring cells or not to move at all. The
matrix MC can be used to model the desired direction of motion, can be both time-
and cell-dependent, and, if distinguishing more than one pedestrian group is needed,
it can be also group-dependent.

Collisions are avoided in a natural way, preventing two pedestrians to move in the
same cell at the same time. In particular, if the target cell is occupied, the pedestrian
does not move. If it is not occupied and no other pedestrian targets the same cell, the
move is executed. If more than one pedestrian share the same target cell, only one is
chosen according to the relative probabilities with which each pedestrian chose their
target. The winner moves while its rivals for the same target keep their position.

A CA model is hardly able to reproduce collective phenomena and let
self-organization arise. This is due to the fact that interactions are basically local
(short-range). On the other hand, allowing pedestrians to move many cells away in
one time step makes the model (and the code) much more complicated, since many
cases have to be managed.

An interesting concept which helps CA model reproduce complex behavior
is that of floor field. It can be used to define a desired velocity field or, more
interesting, long-range interactions. In the last case, the interplay between CA and
floor field gives rise to a hybrid model which may have some flavors of a multiscale
approach. Let us assume that the floor field is a scalar field ˚.t; x/ defined at every
point x of the domain at any time t > 0. The function ˚ affects the transition
probabilities, i.e., for every cell C , the nine values of MC depend on the value
˚.t; xC /, where xC is the center of the cellC . The function˚ has its own dynamics,
which can be dependent on or independent from the status of the cells. To fix the
ideas, let us consider the case in which ˚ is used to model long-range attraction
among pedestrians. Here, any pedestrian leaves a “trace” on the ground that can be
perceived by the others. The intensity of the trace at cell C and time t is given
by ˚.t; xC /. The function ˚ has a double evolution equation: The first one is
continuous and macroscopic, for example a standard diffusion-decay equation

@˚

@t
D D4˚ � ı˚;

where D and ı are the diffusion and the decay coefficient, respectively. This
evolution let the trace spread around and decay in time. The second is instead
discrete-in-time and agent-based. It can be defined by

˚.t C	t; x/ D ˚.t; x/CG.x;˚.t; x//; 8 x 2 C; 8C;
where 	t is the CA time step and the function G is positive if x belongs to an
occupied cell and vanishes if x belongs to an empty cell. In practice, the second
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equation models a discrete-time source for the first equation. This evolution lets the
single pedestrians leave the trace on the ground while moving. Finally, the transition
probabilities are increased where ˚ is large, so that pedestrians tend to follow the
traces left by the others.

4.1.4 Discrete Choice Models

Discrete choice models join the simplicity of cellular automata models with a
continuous-in-space representation of pedestrians. They are suitable to model short-
range interactions only, although a desired direction toward a target can be imposed
as a datum of the problem. Initially, pedestrians are located at generic positions
fXk.0/gk, k D 1; : : : ; N . Then, at any time iteration, the space around each
pedestrian is divided in Nc > 0 small cells (or choices). Each center of the cells
corresponds to a location that pedestrian can reach in the next iteration. Each cell
c D 1; : : : ; Nc is associated to the probability pc 2 Œ0; 1� to make that choice, see
Fig. 4.1. More precisely, at each iteration the probabilities pc are computed on the
basis of pedestrian’s preferences, some of them are listed in the following:

1. Avoid obstacles (obstacles make some cells unavailable, i.e., pc D 0).
2. Avoid crowded cells.
3. Propensity to maintain the current direction of motion.
4. Propensity to reach a given destination.
5. Propensity to follow some pedestrians identified as leaders.

4.2 Macroscopic Models

The description of pedestrian dynamics at the macroscopic scale is based on the
assumption that the number of agents is large enough to be described by locally
averaged quantities, typically density � and velocity v, regarded as dependent
variables of time and space.
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Let us stress that, in some cases, macroscopic models for pedestrian flow simply
extend the one-dimensional approaches proposed for vehicular traffic. The main
addition to the models of pedestrian dynamics is a desired velocity vector field vd W
˝ ! R

2, where ˝ is the domain the pedestrians are free to move in. The desired
velocity is introduced to model the presence of a target (the exit or a meeting point)
that people want to reach, and depends on the geometry of the domain. The desired
velocity vd is generally given as a datum and it is time-independent. It corresponds to
the velocity that pedestrians would set to reach the target if they did not experience
mutual interactions (this is the case, e.g., if only one pedestrian is present). In some
more complicated control-based models, vd is an additional unknown of the problem
and it expresses a strategy to reach the target in an optimal manner, see Sect. 4.4.

First order models are usually constituted by one conservation law of the form

@�

@t
Cr � q.�/ D 0; t > 0; x 2 ˝; (4.6)

where � represents the pedestrian density and q.�/ is their flux, which has to be
given as a function of the density in order to close the model. Since the following
definition holds true:

q.�/ WD �v.�/;

where v is the velocity field, one can alternatively prescribe v.�/. The equation
basically states that the mass of pedestrians moves following the nonlinear velocity
field v.�/ and is conserved in time. The equation is complemented by an initial
condition �.0; x/ D N�.x/ and, if˝ is bounded, by some boundary conditions at @˝
for any t > 0.

Second order models are usually constituted by a system of partial differential
equations for � and v of the form

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

@�

@t
Cr � .�v/ D 0; t > 0, x 2 ˝ (4.7a)

@v

@t
C .v � r/v D a.�; v/; t > 0, x 2 ˝ (4.7b)

where, denoting by .v1; v2/ the two components of v and by .x1; x2/ the two
components of x, we have

.v � r/v D
�

v1
@v1

@x1
C v2

@v1

@x2
; v1

@v2

@x1
C v2

@v2

@x2

�
:

The function a in (4.7b) represents the acceleration of pedestrians and has to be
given as a function of the two unknowns in order to close the system. Equation (4.7a)
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models the conservation of the mass, while (4.7b) accounts for the conservation of
the momentum. The system (4.7a)–(4.7b) is complemented by initial conditions
�.0; x/ D N�.x/, v.0; x/ D Nv.x/, and, if ˝ is a bounded, by some boundary
conditions at @˝ for any t > 0.

Remark 4.1 (first vs. second order models). Pedestrian behavior is only marginally
determined by (pseudo-)mechanical cues, a more relevant role being played by
decisional abilities. For this reason, an inertia-based framework does not appear
to be the most natural setting. To support this claim, we consider, as an example,
that in pedestrian motion impulsive effects are often present: A walker can suddenly
decide to change her velocity to face environmental conditions, such as the presence
of other walkers. Normally, she reaches in a very short time her final velocity, which
then remains constant for a while, until new interactions occur. Nevertheless, there
are some reasons to include acceleration in the models: First, acceleration has a
direct effect on movement since people in a crowd can be pushed around. Second,
acceleration is a perceptible input to the cognitive system and a major source
of information in an information-starved situation. Third, and most important,
acceleration carries the consequences of injuries among pedestrians and it can be
directly considered as a measure of danger and overcompression.

Before listing some of the most important models available in literature, it is
helpful introducing an important ingredient which often recurs in macroscopic
models, namely the fundamental diagram.

4.2.1 Fundamental Diagram

Let us assume that the velocity has the form

v D sw (4.8)

where s (standing for speed) is a scalar function and w is a vector field. For
simplicity, one can assume that s is the modulus of v and w is a unit vector giving
the direction of motion.

The fundamental diagram expresses the relationship between the flux q and the
density �. This relationship was widely studied in one-dimensional traffic flow,
where many experimental measurements were performed and many functions were
proposed. In the pedestrian case, which is instead two-dimensional, it is simpler
referring to the relationship between the speed s and the density �.

Here we present some possible choices for the function s D s.�/ among the
simplest ones, assuming that both the speed and the density are normalized, i.e.,
s; � 2 Œ0; 1�, see Fig. 4.2. Note that many choices are directly derived from the
vehicular traffic literature. It can be also assumed that s depends on � and r�.



4.2 Macroscopic Models 83

0

0.2

0.4

0.6

0.8

1

0 ρcritical 1

s(
ρ)

ρ

1-ρ
1 ∨ exp(-α(ρ-ρcritical)/(1-ρ))

1-exp(-α(1-ρ)/ρ)
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s.�/ D 1 � �

s.�/ D
(
1; 0 � � � �critical

exp
�
�˛ ���critical

1��
�
; �critical < � � 1 ; ˛ > 0; �critical 2 .0; 1/

s.�/ D 1 � exp

�
�˛1 � �

�

�
; ˛ > 0

s.�;r�/ D 1 � � � " 1
�

@�

@w
; " > 0

where @�

@w represents the directional derivative of � with respect to the direction w.

4.2.2 Coscia and Canavesio’s Model

The Coscia and Canavesio’s model is a first order model characterized by a
particular choice of the flux q in (4.6). It is assumed that

q D q.x; �; r�/ D �v.x; �; r�/; with v.x; �; r�/ D s.�; r�/w.x; r�/;
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where s is a scalar function (corresponding to the fundamental diagram, see
Sect. 4.2.1) and w is a vector giving the direction of motion. Note that here w is
not in general a unit vector. Moreover, the actual density � can be replaced with the
fictitious or perceived density

��.�; r�/ WD �
�
1C ".1� �/ @�

@w

�
;

where @�

@w represents the directional derivative of � with respect to the direction
w. The choice of the fictitious density translates the fact that pedestrians actually
perceive a density which is larger (resp., smaller) than the actual one if it is
increasing (resp., decreasing) in their direction of motion.

The function w.x; r�/, instead, is assumed to have the form

w.x; r�/ D vd.x/C C vi.r�/

where C is a parameter, vd.x/ (desired velocity) is simply a unit vector pointing
towards the desired target, and vi.r�/ (interaction velocity) is defined as the
direction of the minimum directional derivative of �:

vi.r�/ D arg min
�2S .x/

�
@�

@�

	
;

where S .x/ is a suitable sensory region, see Sect. 1.1.1. This particular choice of w
models the fact that pedestrians try to reach their target, while, at the same time, try
to escape crowded region.

4.2.3 Colombo and Rosini’s Model

The Colombo and Rosini’s model is a first order one-dimensional model conceived
to catch some special features of the pedestrian behavior in panic conditions. If, on
the one hand, a one-dimensional model cannot be realistic for modeling pedestrian
flow, on the other hand it can shade light on some interesting effects that can arise,
and then serves as a starting point for further generalizations.

A standard one-dimensional conservation law of the form

@�

@t
C @q

@x
D 0; t > 0; x 2 R; (4.9)

is complemented by a non-standard choice of the closure relationship q.�/. Indeed
it is assumed that there exist two “maximal” densities �max and �panic

max , with �panic
max >

�max, such that:
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1. q W Œ0; �panic
max �! Œ0; C1/.

2. q.�/ D 0 if and only if � D 0 or � D �panic
max .

3. Restrictions of q to the intervals Œ0; �max� and Œ�max; �
panic
max � are strictly concave.

A function q satisfying the above assumptions is

q.�/ D max

�
�.7� �/

6
;
3.� � 6/.2� � 21/

20.� � 12/
	
;

see Fig. 4.3. This choice has a clear physical meaning: In normal conditions,
pedestrians density varies in Œ0; �max�, but, contrary to traffic flow, they do not
stop completely when the maximal density is reached. Rather, they enter the panic
state and keep moving, reaching a second maximal flow, until the actual maximal
density is reached (corresponding to an overcompression, and possibly death, of
pedestrians). Such a trend of the fundamental diagram q.�/ was experimentally
confirmed. Nevertheless, the flux q used here and the experimental data cannot
be compared directly since they have different units. Experimental data assume
Œ�� D m�2 and Œq� D m�1 s�1, while in this model one has Œ�� D m�1 and Œq� D s�1.

Standard solutions of (4.9) satisfy a sort of “maximum principle”, i.e., if the
initial datum �.0; x/ is in Œ�m; �M �, then the solution �.t; x/ stays in Œ�m; �M �
for all t > 0. This property prevents de facto the arising of panic conditions.
The problem is solved by allowing the equation to have nonclassical solutions, i.e.,
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solutions satisfying (4.9) in its weak (or integral) form, but possibly violating the
other usual admissibility conditions found in the literature, such as Lax inequalities,
the vanishing viscosity criterion or the various entropy conditions.

4.2.4 Maury et al.’s Model

The Maury et al.’s model is a first order model which can be seen as a macroscopic
version of the Maury and Venel’s model described in Sect. 4.1.2. The pedestrian
population is described by a density � which is subject to remain below a
certain maximal value (equal to 1 in what follows). This constraint represents the
macroscopic counterpart of the hard-collision avoidance.

Given a desired velocity vd, the model uses (4.6) with q.�/ D �v.�/, choosing

v.�/ D PC.�/.vd/;

where P is the projection operator (here the projection is meant in the L2 sense),
and the set C.�/ corresponds to all those velocity fields which do not increase � on
the already saturated zone, namely where � D 1. It is defined by

C.�/ WD
�

w 2 .L2.˝//2 W
Z

˝

w � r
 � 0 8
 2 H1
C.˝/; 
 D 0 a.e. in f� < 1g

	

(4.10)

with

H1C.˝/ D f
 2 H1.˝I R/ W 
 � 0 in ˝g:

The particular choice of C.�/ translates the fact that v cannot have any component
directed from a point where � < 1 to a point where � D 1. Indeed, r
, if not equal
to 0, points toward a region of the space where density is saturated. Equation (4.10)
can be understood as the weak formulation of the following constraint:

r � w � 0 in f� D 1g

which says that the crowd cannot be further compressed in the region where the
maximal density has already been reached.

4.2.5 Nonlocal Models

Pedestrians look ahead up to several meters and take decisions considering the
distribution of the neighbors. Therefore, a realistic model should be nonlocal.
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From the mathematical point of view, this is translated by assuming that the velocity
v D vŒ�� depends on values of the density � around x (square brackets denote
functional dependence) and not only at x. In the following we list three possible
choices for the velocity v.

A first possible choice for the velocity v is

vŒ�� D s.�;r�/.vd C viŒ��/: (4.11)

Here s is a scalar function (corresponding to the fundamental diagram, see
Sect. 4.2.1), vd is a given desired direction, and vi is the interaction velocity,
defined by

viŒ�� D �" r.� 
 �/
q
1C jr.� 
 �/j2

(4.12)

where " > 0 is a parameter, 
 is the convolution operator, and � is a mollifier which
possibly contains information on the sensory region S .x/ (see Sect. 1.1.1). This
choice translates the fact that individuals deviate from the desired path avoiding the
direction of maximal increase of the averaged density.

A second possible choice for the velocity v is

vŒ��.t; x/ D vd.x/C viŒ��.t; x/; viŒ��.t; x/ D �
Z

S .x/

C
y � x
jy � xj2 �.t; y/ dy

(4.13)

where C > 0 is a parameter. This choice translates the fact that pedestrians
are repulsed from other pedestrians. The strength of the repulsion is inversely
proportional to their mutual distance and directly proportional to the density itself.
Notice that this choice gets rid of the fundamental diagram, since the function s.�/
does not appear.

A third possible choice for the velocity v is

vŒ��.t; x/ D s.�.t; xp//
�
�vd.x/C .1 � �/vi.x; xp/

�
: (4.14)

Here � 2 Œ0; 1� is a dimensionless parameter that weights pedestrian attitude to
give priority to the walking area layout or to the crowd conditions, and xp ¤ x is a
point that has to be understood as the location where crowding is more influential,
according to some specific perception criterion. Once the point xp is found, the
interaction velocity is simply given by

vi.x; xp/ D � xp � xˇ
ˇxp � x

ˇ
ˇ
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meaning that pedestrians want to steer clear of the point where crowd is more
influential. The point xp can be defined in several ways:

1. Pedestrians evaluate the perceived density a step forward in the desired direction:

xp.x/ D x C C vd.x/

where C > 0 is a parameter.
2. Pedestrian attention is drawn by the point where the maximum value of � is

attained:

xpŒ��.t; x/ D arg max
y2S .x/

�.t; y/:

3. Pedestrians evaluate xp as the center of mass of the whole crowd:

xpŒ��.t; x/ D

Z

S .x/

y�.t; y/ dy
Z

S .x/

�.t; y/ dy
:

All these choices delocalize the evaluation of the velocity (both modulus and
direction), making the model nonlocal.

4.2.6 Bellomo and Dogbé’s Model

The Bellomo and Dogbé’s model is a second order model characterized by some
particular choices of the acceleration term a in (4.7b).

A first simple version of the model is given by the choice

a.�; v/ D C �s.�/vd � v
� � K

2.�/

�

@�

@vd
vd (4.15)

where C is a parameter, vd is the desired velocity, s.�/, K2.�/ are scalar functions
to be defined (s corresponds to the fundamental diagram, see Sect. 4.2.1), and @�

@vd
represents the directional derivative of � with respect to the direction vd. The first
term at the right-hand side models the trend to the equilibrium velocity s.�/vd, while
the second term represents the action of the density gradient along vd. In the end,
both the local value of the density and its local changes in direction vd are taken into
account. Note that both terms locally induce pedestrians to align with the desired
velocity.

A second version of the model is given by the choice

a.�; v/ D C �s.�/w � v
� � K

2.�/

�

@�

@w
w (4.16)
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with

w D vd C vi and vi.r�; x/ D arg min
�2S .x/

�
@�

@�

	
;

where S .x/ is the sensory region, see Sect. 1.1.1. In this case the preferred direction
of movement can be modified by the presence of other pedestrians, since the
interaction velocity make pedestrians steer toward regions of low density. More
precisely, the direction of the minimal directional derivative of the density is
computed and used to correct the desired velocity.

A third version of the model is derived from the one-dimensional Aw and Rascle’s
model for traffic flow, and it is based on the conservation of a new quantity usually
referred to as the pseudo-pressure P , which replaces the relaxation term in (4.15).
In the two-dimensional setting the pseudo-pressure is a vector P D .P 1; P 2/ and
the system has the form

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

@�

@t
Cr � .�v/D 0

@

@t

�
v1 C P1v1d

� C v1
@

@x1

�
v1 C P1v1d

�C v2
@

@x2

�
v1CP1v1d

� D �˛ �s.�/v1d� v1
�

@

@t

�
v2CP2v2d

� C v1
@

@x1

�
v2CP2v2d

� C v2
@

@x2

�
v2CP2v2d

� D �˛ �s.�/v2d� v2
�
:

(4.17)

The pseudo-pressureP has to be given as a function of � and v in order to close the
system. It can be chosen in several ways, for example

P.�; v/ D �1C�

C � �1C� v

where C is large enough to ensure that C � �1C� > 0, or

P.�; v/ D s.�/vd: (4.18)

Panic conditions can be handled by all the models described above. Authors
suggest to increase the maximal speed of pedestrians while changing sign in front
of the density gradient in (4.15) or (4.16). Indeed, in panic conditions, attractive
accelerations become predominant with respect to repulsive ones because people
tend to follow other walkers in the hope that they have found a way out.

4.3 Mesoscopic Models

Mesoscopic (or kinetic) models are based on a statistical representation of the crowd
in the space of the microscopic states of pedestrians by means of the so-called (one-
particle) distribution function f . If we assume, to fix the ideas, that the microstate of
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a pedestrian is defined by the pair position-velocity .x; v/ 2 R
2 	R2 understood as

independent variables, then the function f is written as f D f .t; x; v/ and is such
that f .t; x; v/ dxdv is, at time t , the (infinitesimal) average number of pedestrians
located in the reference space volume dx centered at x with a velocity belonging to
the reference volume dv centered at v. For the sake of clarity, we point out that in
one space dimension (i.e., .x; v/ 2 R	R) this is read as the (infinitesimal) average
number of pedestrians located between x� 1

2
dx and xC 1

2
dx with a speed comprised

between v � 1
2
dv and vC 1

2
dv.

The distribution function satisfies the following kinetic equation

@f

@t
C v � rxf Crv � .F Œf �f / D J Œf �; (4.19)

whererx , rv� denote, respectively, the gradient with respect to x and the divergence
with respect to v, and moreover:

• The first two terms at the left-hand side form the convective derivative, which
simply states that the distribution function is transported in the space of micro-
scopic states by the velocity of the pedestrians themselves (hence, in practice,
that f is a material quantity for pedestrians).

• The third term at the left-hand side and the one at the right-hand side model
the acceleration acting on pedestrians due to either external actions or mutual
microscopic interactions.

The operator F typically describes a mean field acceleration exerted on the
generic pedestrian with microstate .x; v/, that we will henceforth call test pedes-
trian, by other surrounding walkers, called field pedestrians, within the sensory
region S .x/ of the former:

F Œf �.t; x; v/ D
“

S .x/�R2
F .x; y; v; w/f .t; y; w/ dy dw; (4.20)

where F gives the pairwise interaction between the test pedestrian .x; v/ and the
field pedestrian .y; w/.

The operator J describes instead binary stochastic interactions that can lead
pedestrians to gain or loose, in probability, the test state .x; v/ according to some
transition probabilities. Specifically, J is written as:

J Œf �.t; x; v/ D GŒf; f �.t; x; v/� f .t; x; v/LŒf �.t; x; v/; (4.21)

where G is the (bilinear) gain operator and L the (linear) loss operator. Detailed
forms of F , G, and L will be discussed later with reference to specific models.

In practice, mesoscopic models do not distinguish pedestrians individually, like
microscopic models. However, unlike macroscopic models, they still allow one to
describe pedestrian behaviors at a microscopic individual level, albeit only in terms
of probabilities. Furthermore, once the distribution function is known, macroscopic
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observable quantities can be computed as moments of f with respect to the variable
v. For instance, density and flux are respectively obtained as:

�.t; x/ D
Z

R2

f .t; x; v/ dv; q.t; x/ D
Z

R2

vf .t; x; v/ dv; (4.22)

whence also the macroscopic velocity in the point x at time t can be recovered as
q.t; x/=�.t; x/.

4.3.1 Dogbé’s Model

Dogbé’s model is based on (4.19) with some particular choices of the operators F
and J .

First, the acceleration term F is assumed to contain, besides a mean field
contribution like (4.20), an additional macroscopic contribution expressed in the
form:


.�; r�; v; vd/;

where � is the macroscopic density given in (4.22), r� is its gradient in space,
v is the actual microscopic velocity, and vd is the desired velocity pointing in
the direction of the locally preferred destination. The function 
 can include, for
instance, a relaxation of v toward an equilibrium velocity given in terms of the local
crowd density �, plus a trend to avoid density gradients along the desired path. In this
case, its expression can be taken fully analogous to (4.15), after duly reinterpreting
the symbol v appearing there in the present mesoscopic context. Alternatively, the
action of the density gradient can be generalized by considering in 
 a term of the
form:

@'

@vd
vd D ' 0.�/ @�

@vd
vd;

where the function ' W RC ! R is chosen according to specific attraction/repulsion
dynamics to be modeled. For instance, '.�/ D ��2 may be used to model a stronger
repulsion for increasing crowd density, while '.�/ D log � may model gregarious
pedestrians who like to be close to one another.

As far as the mean field contribution is concerned, cf. (4.20), the proposed
pairwise interaction term F in Dogbé’s model is as follows:

F .x; y; v; w/ D �ˇ1
�
dc � jy � xj
jy � xj

�
e�ˇ2.dc�jy�xj/

2 y � x
jy � xj ;
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hence it does not depend explicitly on the velocities of the test and field pedestrians
and changes sign when the actual distance jy � xj between the latter crosses a crit-
ical threshold dc > 0. In particular, given that ˇ1; ˇ2 are nonnegative coefficients,
the pairwise mean field microscopic interaction is repulsive if jy � xj < dc , i.e., if
the two pedestrians are too close to one another, and is attractive if jy � xj > dc ,
i.e., if they are far from each other. The exponential function is used for producing
a decay of the interaction with the distance.

Finally, stochastic interactions linked to state transition dynamics are modeled by
means of the following classical forms of the gain and loss operators (cf. (4.21)):

GŒf; f �.t; x; v/ D
•

S .x/�R2�R2
�.x; y; v�; w/A.v� ! vjv�; w/!.x; y/

	 f .t; x; v�/f .t; y; w/ dydv� dw

LŒf �.t; x; v/ D
“

S .x/�R2
�.x; y; v; w/!.x; y/f .t; y; w/ dy dw;

(4.23)

where:

• � gives the frequency of encounters, hence of interactions, among pedestrians on
the basis of their microscopic position and velocity. A possible choice borrowed
from the classical kinetic theory is �.v�; w/ D jw � v�j.

• A is the transition probability density associated with a velocity transition event
from a generic v� to the test velocity v in consequence of an interaction with a
pedestrian with velocity w.

• ! is a weight function over the distance between the interacting pedestrian within
the sensory region S .x/.

4.3.2 Bellomo and Bellouquid’s Model

The mesoscopic crowd model by Bellomo and Bellouquid differs from the previous
one in that it aims at revisiting and adapting the mathematical structures of the
classical kinetic theory in the light of some modeling issues specifically raised by
crowds. The main two points that this model addresses are:

• The microscopic granularity, typical of both sparse and dense crowds (cf. the
discussion set forth in Chap. 1, particularly in Sects. 1.2.1, 1.2.3, and 1.4.1),
which makes it questionable to assume a continuous statistical distribution of
the microscopic states of pedestrians.

• The complexity of microscopic interactions, which are viewed as nonlinearly
additive stochastic games, meaning that they are described by the operator J as
opposed to the mean field operatorF and that they take into account the influence
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of the local collective distribution of pedestrians on the behavioral rules applied
by single individuals.

The microscopic granularity is introduced in the model by referring to a particular
structure of the distribution function, namely:

f .t; x; �; s/ D
nX

iD1

mX

jD1
fij.t; x/ı�i .�/˝ ısj .s/; (4.24)

where s is the speed of the test pedestrian and � is the angle which identifies her
direction of motion, so that the velocity can be recovered as v D s.cos �; sin �/
(cf. (4.8)). The symbol ı denotes the Dirac delta distribution, thus the repre-
sentation (4.24) assumes that pedestrian microscopic velocity can distribute only
over a finite set of values, also called velocity classes, identified by a lattice of
normalized speeds Is D fs1 D 0; : : : ; sm D 1g and a lattice of angular directions
I� D f�1 D 0; : : : ; �n D 2
g in the plane.

In (4.24) the functions ffij.t; x/giD1; :::; n; jD1; :::; m, are the discrete kinetic dis-
tribution functions, such that fij.t; x/ dx is the (infinitesimal) average number of
pedestrians that at time t are located in the elementary space volume dx centered at
x and are walking with velocity vij D sj .cos �i ; sin �i /. In other words, fij.t; x/ D
f .t; x; �i ; sj / in distributional sense.

A system of evolution equations for the new unknowns ffij.t; x/giD1; :::; n; jD1; :::; m
is obtained by plugging the representation (4.24) into (4.19) with F D 0 (no mean
field interactions) and J given formally by (4.21)–(4.23). After some technical
calculations, this yields:

@

@t
fij.t; x/C vij � rfij.t; x/ D

nX

h;kD1

mX

p;qD1

Z

S .x/

�Œ��.t; y/A
ij
hp;kqŒ��.t; y/!.x; y/

	 fhp.t; x/fkq.t; y/ dy

� fij.t; x/

nX

kD1

mX

qD1

Z

S .x/

�Œ��.t; y/!.x; y/fkq.t; y/ dy;

(4.25)

where it is further assumed that both the frequency of the interactions � and the
transition probabilities Aij

hp;kq D A.vhp ! vijjvhp; vkq/ depend on the macroscopic
density �. The latter, in turn, depends on the whole set of discrete kinetic distribution
functions, as it can be easily seen by inserting (4.24) into the first of (4.22):

�.t; y/ D
nX

iD1

mX

jD1
fij.t; y/:
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This ultimately makes microscopic interactions nonlinearly additive. Indeed the
terms encoding the microscopic behavioral rules of pedestrians bring technically
further nonlinearities in the right-hand side of (4.25) as they are affected by the
collective state of the crowd within the sensory region of the interacting individuals.

At last, it is worth spending a few words to discuss in which sense the inter-
actions expressed by the right-hand side of (4.25) can be assimilated to stochastic
games. The coefficients Aij

hp;kq give the probability that a pedestrian with velocity
vhp D sp.cos �h; sin �h/, called in this context candidate pedestrian, jumps to
the test velocity vij D sj .cos �i ; sin �i / in consequence of an interaction with a
field pedestrian with velocity vkq D sq.cos �k; sin �k/ within her sensory region.
Candidate and field pedestrians can be viewed as two players who play a game at
each interaction, their game strategies being the respective velocities vhp, vkq. The
payoff of the game is the new velocity vij that the candidate pedestrian can get after
the interaction. Such a payoff is not known deterministically from the knowledge
of the strategies of the two players because it depends on personal behaviors which
are better described in probabilistic terms. From this point of view, the transition
probabilities Aij

hp;kq form actually the probability distributions of such stochastic
payoffs conditioned to the game strategies (viz. the pre-interaction velocities) of
the two players/pedestrians. Remarkably, the payoff of the game is, at the same
time, the new strategy that the candidate pedestrian will use in approaching future
interactions. Therefore, such a description of the microscopic interactions reflects
the evolution in time of the behavioral strategy of pedestrians.

4.4 Models for Rational Pedestrians

Are pedestrians fully rational? Is their way to move the result of some optimal
strategy to reach their targets? In general, the answer is no for several reasons. First,
they do not always have a priori knowledge of the environment they move in, so
they cannot choose their path in an optimal manner. Second, they are not completely
able to forecast the behavior of other pedestrians, especially for long time. Third,
and most important, they are selfish: Individuals try to reach their goal regardless of
the wills of the others, and rarely consider the fact that a collaboration can in fact be
advantageous, in particular if the collaboration requires (counterintuitively) to stop
or slow down for some time. On the other hand, in some special situations (e.g.,
well known walking area, routine itinerary) pedestrians can actually show good
predictive abilities and an optimal behavior.

Keeping this in mind, it can be interesting to model the ideal fully rational
behavior of pedestrians in order to better understand the role of rationality in the
final behavior, and also to set the rational behavior as a sort of a “target” for normal
pedestrians.

In the following we briefly describe five models for rational pedestrians. The
first one is “nanoscopic”, meaning that it considers the internal dynamics of the
single pedestrian. The second one is microscopic, the third and the fourth ones
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are macroscopic, and the last one has a multiscale flavor. Before describing the
macroscopic models, we will recall some features of the eikonal equation, since it
is an important ingredient of such models.

4.4.1 The Arechavaleta et al.’s Model

The Arechavaleta et al.’s model is a control-based model which deals with a
pedestrian moving in a free environment, thus does not take into account the
presence of other pedestrians and obstacles. It was originated as a way of studying
human locomotion and to reproduce that in robots. The model is defined at the
nano scale, since it is based on information on the internal dynamics of the single
pedestrian.

The main idea is that the pedestrian decides her trajectory by acting linearly with
two controls: the first affecting the velocity and torsion of her body and the second
affecting the curvature. The motion is then decided by minimizing the square of the
control norm. Indicating by .x; y/ the position of the body’s torso in given reference
system, by � its angle with respect to the first coordinate axis and � its curvature,
the equations are written as:

8
ˆ̂
<

ˆ̂
:

Px D u1 cos.�/
Py D u1 sin.�/
P� D u1�
P� D u2

where the first control u1.t/ 2 Œa; b� and the second control u2.t/ 2 Œ�c; c�, for a
suitable choice of the parameters a; b; c. The optimal control problem is given by:

min
u1; u2

1

2

Z T

0

�
˛ u21 C ˇ u22

�
dt

where ˛, ˇ are other two parameters and T is the final time. Solutions to the optimal
control problem are given by concatenations of arc of clothoids.

4.4.2 Hoogendoorn and Bovy’s Microscopic Model

The Hoogendoorn and Bovy’s microscopic model is based on the assumption that
pedestrians can forecast to a certain extent the behavior of the others, and then
choose their direction of motion on the basis of the forecast. It consists of two
main ingredients: A force based model (see Sect. 4.1.1) and a cost functional to
be minimized, which translates the “cost” (in terms of discomfort due to proximity
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of other pedestrians, straying from the desired direction, etc.) associated to every
possible trajectory joining the current position to the desired target. Recalling (4.1),
the model has the form

� PXk.t/ D V k.t/
PV k.t/ D F k.t/C U k.t/

k D 1; : : : ; N; (4.26)

where U k is a control variable which can be freely chosen by each pedestrians in
a given set of admissible controls U k . System (4.26) is complemented by initial
conditionsXk.�/, V k.�/ at some initial (generic) time t D � , for k D 1; : : : ; N .

Let us denote the complete state of the system by

Z WD .X1; : : : ; XN ; V 1; : : : ; V N /

and define

V WD .V 1; : : : ; V N /; F WD .F 1; : : : ; F N /; U WD .U 1; : : : ; U N /:

Then, we can rewrite the complete dynamics in a short form as

PZ.t/ D f .Z; U / WD
�

V

F C U
�
: (4.27)

Each pedestrian has her own cost functional of the form

J k.U I �/ WD
Z 1

�

e��sLk.s; ZU;� .s/; U.s// ds;

where � � 0 is any initial time, � � 0 is a discount factor translating the fact that a
short-term saving is preferable to a long-term saving, Lk is the cost function which
takes into account any modeling assumptions about preferences of pedestrians, and
ZU;� .t/ is the solution of (4.27) with initial time � and control U .

At any time � , pedestrian k is assumed to behave in the following way. First, she
predicts the choice of the controls of the others, i.e., it is assumed that she knows
the vector

U�k.t/ WD .U 1.t/; : : : ; U k�1.t/; U kC1.t/; : : : ; U N .t//; 8 t � �

which is the vector U.t/ where the k-th component is removed. Then, she finds

U k;� D arg min
Uk2U k

J..U 1; : : : ; U N /I �/:

Finally, she moves following (4.26) and employing the control U k;�.
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The knowledge of U�k.t/ for any t � � can be obtained in several ways.
The simplest choice proposed by the authors of the model is U�k.t/ D 0, which
translates, e.g., the fact that pedestrians have no idea on the response behavior of
the others to the current state of the system. Another possibility is that pedestrians
predict the behavior of the others by assuming that the latter behave according to
some (given) feedback mechanism, i.e., U�k.t/ D U�k.Z.t//.

4.4.3 Eikonal Equation and Minimum Time Problems

The eikonal equation often appears as a crucial ingredient of macroscopic models.
This is due to its relation to minimum time problems. Let us consider a single
pedestrian who can move in the domain ˝ and denote her position at time t by
X.t/. Assume that her starting point is NX 2 ˝ and that she wants to reach a given
target � � ˝ in minimal time (for example an emergency exit). Moreover, assume
that her dynamics is given by

� PX.t/ D v.X.t/; u.t// D s.X.t// u.t/; u.t/ 2 B1.0/
X.0/ D NX (4.28)

where B1.0/ 2 R
2 is the unit two-dimensional ball, s W ˝ ! R is a given scalar

function, and u is the control variable. Here we denoted by v the velocity of the
pedestrian and by s the modulus of v. Note that the speed (and then the velocity)
does not depend explicitly on time. The pedestrian is assumed to be free to decide
her direction of motion, i.e., she can choose the control u 2 B1.0/ at any time.
The question arises which is the optimal direction of motion u�.�/ which let the
pedestrian reach the target in minimal time (the optimal direction will not be, in
general, the straight line joining NX and � since s is space-dependent).

The eikonal equation allows one to find the optimal direction u� in feedback
form, i.e., depending on the space, i.e. one can compute the function u� D u�.x/
for any x 2 ˝n� , such that the minimal time trajectory to the target is given by the
solution to

� PX D s.X/u�.X/;
X.0/ D NX:

By means of the Dynamic Programming principle, under suitable conditions, it
is possible to characterize the optimal direction u� as

u�.x/ D � r
.x/jr
.x/j ; x 2 ˝ n �
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where 
 is the unique viscosity solution of the following eikonal equation (which in
this context is seen as a particular Hamilton-Jacobi-Bellman equation)

�
s.x/ jr
.x/j D 1; x 2 ˝ n �

.x/ D 0; x 2 � (4.29)

complemented with suitable boundary conditions at @˝ . The value 
.x/ corre-
sponds to the minimal time to reach the target starting from any point x 2 ˝n�
and employing the optimal direction of motion.

If the speed depends also on time, i.e., v D v.t; x; u/ D s.t; x/u, two approaches
can be followed:

1. The time variable is simply seen as a parameter. The eikonal equation is

�
s.�; x/ jr
.�; x/j D 1; x 2 ˝ n �

.�; x/ D 0; x 2 � (4.30)

and it is solved for any fixed time � . At each time � , the optimal direction is

u�.�; x/ D � r
.�; x/jr
.�; x/j ; x 2 ˝ n �:

2. The time variable is treated in the same way as the space variables and the
minimum time problem is reformulated in the space-time. The target is extended
as � 0 D ft > 0g 	 � and the new three-dimensional velocity field is

v0.t; x; u/ WD
�

1

s.t; x/u

�
; u 2 B1.0/: (4.31)

Note that pedestrians “move” in time with fixed speed 1 since time travel is (so
far) impossible. The Hamilton-Jacobi-Bellman equation associated to the new
problem is

(
max

u2B1.0/
f�v0.t; x; u/ � rt; x 
.t; x/g D 1; .t; x/ 2 .RC 	˝/ n � 0


.t; x/ D 0; .t; x/ 2 � 0
(4.32)

where rt; x denotes the gradient with respect to both space and time variables. In
this case 
 is the minimal fictitious time to reach the target � 0 in the space-time.
The optimal direction is

u�.t; x/ D arg max
u2B1.0/

f�v0.t; x; u/ � rt; x 
.t; x/g; .t; x/ 2 .RC 	˝/ n � 0:

This way, the optimal direction is computed taking into account the fact that the
speed varies in space and time.
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Fig. 4.4 Optimal velocity fields to reach the exit on the upper side from any point of the room
at t D 0. The red square represents a slow region moving to the right with constant speed. (a)
Parametrized eikonal equation; (b) space-time eikonal equation

To better elucidate the difference among the two approaches, we show in Fig. 4.4
two optimal velocity fields computed by the parametrized eikonal equation (4.30)
and its space-time extended version (4.32). We considered a room with one exit
(target) on the upper side, to be reached in minimal time. Pedestrians are freely to
move in the room with speed 1, but for a square region R (say, a crowded area)
moving rightward, in which pedestrians have to slow down (R moves with its own
prescribed dynamics, embedded in the function s). Both velocity fields shown in
Fig. 4.4 correspond to the initial time t D 0. If time dimension is not taken into
account, the optimal velocity field prescribes to circumvent R whenever R is in
between the starting point and the target. Conversely, if the dynamics of R is taken
into account in the computation of the optimal velocity, pedestrians starting behind
and sufficiently far from R move immediately to the target in a straight line, since
they predicted that once they will have reached the initial position of R, it will be
moved to the right, and the way will be clear.

4.4.4 Hughes’ Model

The Hughes’ model describes pedestrians by means of two quantities, their density
�.t; x/ and their (two-dimensional) velocity v.t; x/, with t > 0, x 2 R

2. The model
is based on the assumption that pedestrians want to reach their destination, denoted
by � , as soon as possible but temper this behavior to avoid high densities. This
result is obtained by coupling a conservation law for the density and an eikonal
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equation for the velocity. Referring to the notations used in Sect. 4.4.3, we have that
the speed s.t; x/ D jv.t; x/j of pedestrians is a given function of the density �, i.e.,

s.t; x/ D s.�.t; x// (4.33)

corresponding to the fundamental diagram, see Sect. 4.2.1.
The velocity v is given by

vŒ�; 
�.t; x/ D s.�.t; x//wŒ
�.t; x/; wŒ
�.t; x/ D � r
.t; x/jr
.t; x/j ; (4.34)

where 
 is an auxiliary function, called potential. The model is constituted by a
conservation law for �

@�

@t
Cr � .�vŒ�; 
�/ D 0; t > 0; x 2 ˝ (4.35)

with initial conditions �.0; x/ D N�.x/, x 2 R
2 and where, at any fixed time

t D � , the function 
 is computed by solving the following �-parametrized eikonal
equation

s.�.�; x// jr
.�; x/j D 1; x 2 ˝ n � (4.36)

with boundary conditions 
.�; x/ D 0, x 2 � (in addition to suitable boundary
conditions on @˝). The coupling between (4.35) and (4.36) is obtained by means
of (4.34).

Setting the problem in the context of minimum time problems (see Sect. 4.4.3),
the model has a clear physical meaning: Pedestrians move with some velocity v,
its modulus s.�/ being dependent on the density, while its direction being optimally
computed in a such a way it follows the minimum time path to the target. In turn, the
minimum time problem is solved at any time t D � by assuming that the speed in the
whole domain is given by s.�.�; x//, x 2 ˝ . Note that the use of the (parametrized)
eikonal equation falls in the category described in (4.30) rather than (4.32). In this
way, the model guarantees that pedestrians will choose their paths in the domain in
a optimal manner with respect to the instantaneous walking cost information, that
is, the pedestrian distribution at the time.

4.4.5 Hoogendoorn and Bovy’s Macroscopic Model

The Hoogendoorn and Bovy’s macroscopic model describes pedestrians with even
more rational capabilities with respect to those described by the Hughes’ model.
Indeed, it is assumed that pedestrians forecast with no error the behavior of the
others and choose their paths in a optimal manner with respect to the complete
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walking cost information, that is, the pedestrian distribution at any time. The final
behavior of the crowd represents an equilibrium for the system, in the sense that
pedestrians cannot improve their choice of the path (further minimizing some given
cost functional) by unilaterally changing their path choice (cf. the Nash equilibrium
found by the mean field game models described in Sect. 4.4.6).

To avoid introducing new variables and notations, we present here a minimum-
time version of the model, which is a direct generalization of the Hughes’ model
(see bibliographical notes for details). Referring to the notations of Sects. 4.4.3–
4.4.4, and defining

v0Œ��.t; x; u/ WD
�

1

s.�.t; x//u

�
; u 2 B1.0/ (4.37)

(cf. (4.31)), the system of equations to be solved is

8
ˆ̂<

ˆ̂
:

@�

@t
Cr � .�vŒ�; 
�/ D 0; t > 0; x 2 ˝ (4.38a)

max
u2B1.0/

f�v0Œ��.t; x; u/ � rt;x 
.t; x/gD 1; .t; x/ 2 .RC 	˝/ n � 0 (4.38b)

with initial conditions �.0; x/ D N�.x/ and boundary condition 
.t; x/ D 0 for
.x; t/ 2 � 0. The equation is solved iteratively in the following way:

1. The domain˝ is assumed to be completely empty (� � 0). Function s in (4.33)
is computed, then function v0 in (4.37) is computed. Equation (4.38b) is solved
for 
.

2. Equation (4.38a) is solved for any t > 0, with v defined as in (4.34), and wŒ
�
assumed to be given. An updated � is computed.

3. Functions s and v0 are evaluated with the updated � and (4.38b) is solved again.
4. The procedure is iterated until a stationary solution for � is found.

In this case the use of the eikonal equation falls in the category described in (4.32)
rather than (4.30). Indeed the pedestrian velocity v is now computed taking into
account the future changes of the speed s, which, in turn, depend on the future
pedestrian distribution �, and then on the pedestrian velocity v itself.

See Sect. 4.4.6 for a similar approach based on the theory of mean field games.

4.4.6 Mean Field Game Models

The mean field game approach assumes pedestrians to be rational and have rational
expectations. Individuals anticipate the crowd evolution first, then evaluate their
cost function. Next, they deduce their strategy (feedback control). Finally, the
mass evolves according to these strategies. At the optimum the mass evolution
has to coincide with the one which has been anticipated, according to the rational
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expectations assumption. The crowd strategy is then a Nash equilibrium. This
forward-backward approach is conceptually similar to the Hoogendoorn and Bovy’s
macroscopic model described in Sect. 4.4.5. There, (4.38a) is the forward equation
and (4.38b) is the backward equation.

The mean field game setting has some analogies with the multiscale model
discussed in this book. It has a microscopic foundation as a N -player differential
game, but the crowd is treated as a density in the limit game when N !1.

In the following we restrict the discussion to the continuum of players setting
(N D 1), presenting the equations of the mean field game system whose solutions
are mean-field equilibria. The two-dimensional first order stochastic dynamics of a
single pedestrian located at some generic point x 2 R

2 is

(
dXt D Ut dtC �dW t ; t 2 Œ0; T �
X0 D x

(4.39)

where � > 0 is a parameter, T is the final time,Wt is the two-dimensional Brownian
motion, U 2 U is the control variable, and U is the set of admissible controls.
Let us denote by XU;x

t the solution of (4.39) and by � the macroscopic density
distribution. For any x and t � T , the value function is defined by


.t; x/ D inf
U2U E


Z T

t

L
�
s; XU;x

s ; Us; �.s; X
U;x
s /

�
ds

�
;

where E Œ�� is the expected value. Here L is the cost function (the terminal cost
is assumed to be 0 for simplicity) which depends on time, trajectory, control and
density distribution along the trajectory. Note that a single microscopic pedestrian is
able to anticipate the crowd distribution and then evaluates the mass she encounters
during her trip Xs .

Then, the Hamiltonian H of the problem is defined, as usual, as the Legendre
transform of L,

H.t; x; p; �/ WD sup
q2R2
fp � q �L.t; x; q; �/g ; p 2 R

2;

and the mean field game system is

8
ˆ̂
<

ˆ̂:

@�

@t
� �

2

2
4�Cr �

�
�
@H

@p
.t; x; r
; �/

�
D 0

@


@t
C �2

2
4
 CH.t; x; r
; �/ D 0

(4.40)

with initial and terminal conditions �.0; x/ D N�.x/ and 
.T; x/ D 0.
The first equation in (4.40) describes the mass evolution equation of the system.

Its solution is the distribution of pedestrians transported according to individuals’
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optimal velocity field (forward in time). The second equation in (4.40) is a
Hamilton-Jacobi-Bellman equation for the adjoint variable 
. It basically gives the
optimal strategy obtained by a feedback reasoning (backward in time).

4.4.7 Playing with Rationality

Other models for rational pedestrians can be obtained from the ones described in
the previous sections.

A simplified version of the Hughes’ model, named dynamic continuum model
with memory effect, can be obtained by a full decoupling of Eqs. (4.35) and (4.36).
First, the domain is assumed to be empty, so that � � 0 and the speed s is
constant. Then the eikonal equation is solved, in order to compute the minimum-
time trajectories to the target. Finally, the conservation law is solved for any t > 0

keeping 
 frozen. In this way, the initially-optimal path does not change in time,
thus resulting in the end to be nonoptimal. Nevertheless, theoretical and numerical
investigation is simpler, and the method is expected to be accurate for low densities.

Interestingly, the Hughes’ model and the Hoogendoorn and Bovy’s macroscopic
model can be hybridized, giving rise to a family of models indexed by a parameter
M 2 Œ0;C1/. For M D 0 one recovers the Hughes’ model, while for M !
1 one recovers the Hoogendoorn and Bovy’s model (in its minimum-time version
presented in Sect. 4.4.5). The idea behind the model is that pedestrians do have
predictive capabilities but limited in time, extending only up to a time M in the
future. As in the Hughes’ model, at any fixed time t D � , an offline procedure is
run, which returns the optimal velocity field at time � . But, as in the Hoogendoorn
and Bovy’s model, we assume not only that pedestrians are aware of the current
distribution of the density �.�; �/ on ˝ , but also that they can forecast the evolution
of �, in this case until time �CM . Then, one ends up again with a coupled forward-
backward system similar to (4.38a)–(4.38b), to be solved at any time t D � .

4.5 Bibliographical Notes

Although the research in pedestrian modeling is relatively young, the literature in
this field is already large. This is probably due to the fact that many models are
inspired by the vehicular traffic literature, which has been deeply investigated for
decades. Some reviews are already available, see Bellomo and Dogbé [16], Duives
et al. [67], Helbing [83], Ho and Wong [93], and Papadimitriou et al. [137]. See also
the comprehensive papers by Bellomo and Bellouquid [14], Bellomo et al. [17], and
the special issue [40].

In the following, we just point out some selected references which represent
milestones in the field and/or are of particular interest for this book.
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Section 4.1.1 The magnetic force model was introduced in 1979 in the very pio-
neer five-part paper by Okazaki [130–132], Okazaki and Matsushita [133], and
Okazaki and Yamamoto [134]. Note that the original Japanese text is followed
by a long summary in English, and that the paper is available online. The paper
presents a number of numerical experiments which are still nowadays under
investigation: Crossing flows of pedestrians (individuals and groups), passing
pedestrians, pedestrians negotiating blind corners, pedestrians at intersections,
flows at bottleneck, obstacle avoidance, wall-pedestrian interactions, evacuation
from complex environments as a train station or a classroom (either or not guided
by signals), and others.
The social force model was “officially” introduced by Helbing and Molnár [88]
in 1995, even if same ideas appeared some years before, see, e.g., Helbing [81].
Modeling of panic conditions is studied in Helbing et al. [85]. The paper by
Helbing and Vicsek [90] points out that the exact expression of the repulsion
force is not really important for the emergence of self-organizing effects. This
is confirmed by the fact that several models catch self-organization, even if they
handle the repulsion among pedestrians in rather different ways.
The centrifugal force model was introduced by Yu et al. [174] in 2005. A gener-
alization to non point-like pedestrians can be found in Chraibi et al. [37]. There,
it is proposed a more detailed description by modelling pedestrians as ellipses
with velocity-dependent semi-axes. A general discussion about advantages and
drawbacks of force models can be found in Chraibi et al. [36], see also Köster
et al. [112].

Section 4.1.2 The Maury and Venel’s model was introduced in [122] in 2007
(see [123] for a reference in English). The macroscopic counterpart of the same
model is described in Sect. 4.2.4.

Section 4.1.3 The literature for Cellular Automata models is huge. We point out
the papers by Blue and Adler [19–21], and, among others, Burstedde et al. [30]
and Kirchner and Schadschneider [109]. In Burger et al. [29] it is derived a
macroscopic model passing to a continuous limit from the microscopic Cellular
Automaton described by Kirchner and Schadschneider [109].

Section 4.1.4 For discrete choice models we referred primarily to the paper by
Antonini et al. [8].

Section 4.2 Regarding macroscopic models in general, it is useful to mention
first some milestone models for vehicular traffic flow, which served as a basis
for two-dimensional generalizations. The Lighthill-Whitham-Richards model
was proposed independently by Lighthill and Whitham [118] in 1955 and
Richards [151] in 1956. The Payne-Whitham model was proposed independently
by Payne [138] in 1971 and Whitham [170] in 1974. In 1995, the paper by
Daganzo [55] pointed out some important drawbacks of second order models,
healed later by, e.g., Aw and Rascle [10] in 2000 and Zhang [175] in 2002.
With regards to macroscopic models for pedestrian flow, Helbing [82] in 1992
wrote fluid-dynamic equations taking inspiration from the Boltzmann-like gas-
kinetic approach by Henderson [91]. He avoided some unrealistic assumptions,
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such as the conservation of momentum and energy, thereby obtaining a theory
specifically focused on pedestrians.

Section 4.2.1 Literature regarding fundamental diagrams is huge, especially for
vehicular traffic. Functions reported in Section 4.2.1 are discussed in the papers
by Bellomo and Dogbé [15, 16], and by Coscia and Canavesio [43]. Recently,
they have been used by Hartmann and von Sivers [80] with a variable maximum
speed, which acts as a parameter structuring internally the crowd. Regarding
specifically the experimental literature for pedestrian flow, we mention, among
others, the papers by Daamen and Hoogendoorn [53], Seyfried et al. [158], Hel-
bing et al. [87], Venuti and Bruno [162], and Schadschneider and Seyfried [156],
where several experiments and comparisons are performed.

Section 4.2.2 The Coscia and Canavesio’s model was introduced in [43] in 2008.
The paper presents also several combinations of existing models. The idea of the
fictitious density was introduced by De Angelis in [57].

Section 4.2.3 The Colombo and Rosini’s model was first introduced in [41] in
2005. A more complete study is presented in 2009 by the same authors [42]
and then further expanded in the book by Rosini [153]. The paper by Helbing
et al. [87] confirmed experimentally the particular shape of the fundamental
diagram.

Section 4.2.4 The Maury et al.’s model was introduced in [120] in 2010. One year
later, Maury et al. [121] extensively compared this model with its microscopic
counterpart (see Sect. 4.1.2). In both papers it is pointed out that the two models
can have different bahavior in particular situations. In [121] the authors proposed
an interesting nonstandard micro-macro approach for the numerical solution of
the equation with the projection operator.

Section 4.2.5 Nonlocal models were introduced by several authors. The
model (4.11)–(4.12) was investigated by Colombo et al. [38] in 2012 from
the theoretical and numerical point of view. The choice described in (4.13) is
used, for example, by Cristiani et al. [48] in 2011 and by Bruno et al. [26] in
a civil-engineering-oriented context. It is inspired by the biological literature
for swarms, flocks, schools, or herds. We refer to Mogilner et al. [124]
and references therein for an accurate investigation of the nature of mutual
interactions that lead to clustering, uniform spacing, and self-avoidance of the
agents. The delocalization technique described in (4.14) is used by Piccoli and
Tosin [144, 145], and by Bruno et al. [27]. Colombo et al. [39] study a nonlocal
model in the framework of a control problem, aiming at finding initial conditions
for the density such that it remains under a given threshold for all times.

Section 4.2.6 The Bellomo and Dogbé’s model was introduced in [15] in 2008.
Equation (4.17) with the closure relation (4.18) first appeared in 2006 in
the paper by Al-nasur and Kachroo [3], together with its derivation from a
microscopic follow-the-leader model and a finite volume approximation. Jiang
et al. [106] introduced in 2010 a two-dimensional generalization of the Payne-
Whitham macroscopic model coupled with the eikonal equation for the path
choice strategy. Further references for second order fluid dynamic models are the
papers by Bellomo and Bellouquid [14], Bellomo and Dogbé [16], and Bellomo
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et al. [17]. A numerical approach for solving Eqs. (4.7a), (4.7b) complemented
with Eq. (4.15) can be found in Dogbé [63].

Section 4.3 Concerning mesoscopic models in general, at present there are actu-
ally few contributions in the literature dedicated to crowds. Kinetic approaches
seem to be much more developed for problems of swarm dynamics, see e.g.,
Carrillo et al. [33] and Ha and Tadmor [78]. Probably the very first attempt to
describe crowd dynamics from a kinetic point of view is due to Henderson [91]
in 1974, who points out some analogies between crowds and molecular systems
of classical gas dynamics. Then, he postulates that in some circumstances
conservation laws of mass, momentum, and kinetic energy can be applied to
human flow and then that the Boltzmann transport equation is applicable. See
also the more recent paper by Hoogendoorn and Bovy [94].

Section 4.3.1 The Dogbé’s model was proposed in [65] in 2012.
Section 4.3.2 The Bellomo and Bellouquid’s model was introduced in [14] in

2011. Notice that the effect of the microscopic granularity is taken into account
only in the distribution of the velocity, while the other variable identifying the
microstate of pedestrians, namely the position, is left continuous. Recently, a
fully-discrete-state kinetic approach to the modeling of stochastically interacting
agents has been proposed by Fermo and Tosin [70, 71] for vehicular traffic, in
order to take into account also the impact of the granular spatial distribution of
vehicles on the global traffic flow.

Section 4.4.1 The Arechavaleta et al.’s model was introduced in [9] in 2008. This
model was designed using laboratory experiments. An inverse problem approach
was used to determine the cost function which would generate the observed
trajectories as optimal ones. The same approach was also followed in the recent
paper by Chitour et al. [35].

Section 4.4.2 The Hoogendoorn and Bovy’s microscopic model was introduced
in [95] in 2003.

Section 4.4.3 With regards to the eikonal equation and Hamilton-Jacobi-Bellman
equations in the framework of minimum time and optimal control problems,
a comprehensive discussion can be found in the book by Bardi and Capuzzo
Dolcetta [13]. The interested reader is also referred to Cristiani [45]. For
numerical aspects we refer to the recent book by Falcone and Ferretti [69]. For
the issue of reconstructing optimal controls and optimal trajectories, using the
gradient of the viscosity solution to the Hamilton-Jacobi-Bellman equation, we
refer to the book by Bressan and Piccoli [25] and to Piccoli and Sussmann [143].

Section 4.4.4 The Hughes’ model was (very) briefly introduced in [101] in 2000
and then detailed by the same author in [102] in 2002. The interpretation of the
model in terms of minimum time problem was pointed out by Huang et al. [100]
in 2009, who also propose a numerical method to solve the associated equations.
The one-dimensional version of the model was theoretically investigated by Di
Francesco et al. [62], Amadori and Di Francesco [4], El-Khatib et al. [68], and
Goatin and Mimault [73]. A second order version of a Hughes-like model was
proposed by Twarogowska et al. [161].
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Section 4.4.5 The Hoogendoorn and Bovy’s macroscopic model was introduced
in 2004 in the notable paper [96]. See also the preliminary paper [97]. In its
original version, the optimal control problem is based on the finite-horizon
formulation. The minimum-time version of such problem was proposed by
Cristiani et al. [50] for a nonlocal model which is not based on fundamental
diagrams.

Section 4.4.6 The mean field game approach for the study of crowd motion was
investigated by Dogbé [64] in 2010 and by Lachapelle and Wolfram [115] in
2011 (see also the Ph.D. thesis by Lachapelle [114]). We refer to the long paper
by Guéant et al. [77] and references therein for an overview of mean field game
theory and its applications. Recently, Burger et al. [28] proposed a mean field
game model specifically conceived for evacuation problems, in the spirit of the
Hughes’ model.

Section 4.4.7 The dynamic continuum model with memory effect was investigated
by Xia et al. [173]. The hybrid model was proposed by Cristiani et al. [50],
together with a classification of crowd models on the basis of their rationality
degree. In addition, the authors solve a challenging shape optimization problem
which consists in controlling the environment in such a way that the normal
behavior is as close as possible to the rational one.



Chapter 5
Multiscale Modeling by Time-Evolving
Measures

Abstract This chapter is devoted to a multiscale approach to the modeling of
crowd dynamics, which is the core topic of the book. We begin by presenting,
in Sect. 5.1, a general measure-based modeling framework suitable to include the
basic features of pedestrian kinematics at any scale. Specifically, we assume that
pedestrian motion results from the interplay between the individual will to follow a
preferred travel program and the necessity to face the rest of the crowd. We discuss
in Sect. 5.2 how to properly model these behavioral aspects. In Sect. 5.3 we show
how discrete (microscopic) and continuous (macroscopic) models can be obtained
in the proposed framework, before focusing, in Sect. 5.4, on multiscale modeling
issues. We also propose a detailed dimensional analysis, which highlights the role of
a few significant parameters, and a numerical scheme for the approximate solution
of the equations. The scheme is obtained in two steps in Sect. 5.5. First we derive a
discrete-in-time model; next we discretize the space variable as well, obtaining an
algorithm (cf. Appendix B) which can be implemented on a computer to produce
simulations (cf. Chap. 2). Finally, in Sect. 5.6 we extend the previous modeling
structures to the case of two interacting crowds.

5.1 Conservation Laws by Time-Evolving Measures

The key idea of the multiscale approach is to describe the distribution of pedestrians
in space through their mass, represented by an abstract measure. By measure we
intend a mapping which associates to (some) subsets of the physical space R

d a
(nonnegative) real number. The reader can find in Appendix A an introduction to
the mathematical measure theory, and to its jargon, which we extensively use in
what follows.

Remark 5.1. Although in this chapter we refer exclusively to human crowds, the
modeling structures we present are suitable for application to a variety of other
systems of mobile interacting agents, as discussed in Sect. 1.4.2. Therefore, the
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modeling framework is presented for a generic dimension d of the physical space,
which in most practical applications will be 1, 2, or 3.

We model the mass of a crowd at time t � 0 as a Radon positive measure �t
defined on the Borel �-algebra B.Rd /. For every measurable subset E of Rd , i.e.,
E 2 B.Rd /, the number�t .E/ � 0 represents the mass of pedestrians contained in
E at time t . It is worth noticing that these are very general assumptions: In principle,
the only real assumption on �t at this stage is �-additivity, which directly translates
the principle of additivity of the mass.

Remark 5.2. Like in the rest of the book, we will use the subscript t to indicate
that a certain measure depends on (or is parameterized by) time. In particular, this
notation will not denote the partial derivative with respect to t , for which we will
write instead @

@t
.

Together with the �-additivity principle, we will apply the principle of conserva-
tion of mass, stating that the mass of a set E can vary in time only because of inflow
or outflow of mass from the boundary @E . In an Eulerian frame of reference, this is
expressed by the equation

@�t

@t
Cr � .�tv/ D 0; (5.1)

where v W Œ0; C1/ 	 R
d ! R

d , v D v.t; x/, is the velocity field which transports
the mass. For the moment, we regard it as a generic function, ultimately depending
on space and time. However, the way in which such a dependence is implemented
may involve (and, in fact, in our model it will, cf. Sect. 5.2) the measure �t itself.

We recall that choosing an Eulerian point of view means referring the space
coordinate x to the current configuration of the system and looking at what happens
in the geometrical point x as the system evolves. Therefore, quantities computed
in x do not always refer to the same particle of the system as time goes by, but
rather to the particle which is flowing through x at the current time instant (namely,
a different particle from time to time). We anticipate that in Sect. 5.5, with reference
to discrete-in-time models, we will see how the conservation law (5.1) can be stated
in a Lagrangian frame.

Derivatives as they appear in (5.1) are only formal and must be correctly
understood in the functional sense of measures. For this, we consider each term
of (5.1) as a distribution acting on a test function 
 2 C1c .Rd /, so that for a.e. t we
have

d

dt

Z

Rd


.x/ d�t.x/ D
Z

Rd

v.t; x/ � r
.x/ d�t.x/; (5.2)

where integration-by-parts has been used at the right-hand side, along with the
compactness of the support of 
 which drops the boundary term.

A family of time-evolving measures f�t gt>0 is then said to be a weak solution (or
a solution in the sense of measures) to (5.1) if the mapping
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t 7!
Z

Rd


.x/ d�t .x/

is absolutely continuous and satisfies (5.2) for all 
 2 C1c .Rd / and a.e. t . In
particular, by integrating (5.2) between any two times 0 � t1 � t2, the latter
statement means that �t satisfies

Z

Rd


.x/ d�t2.x/ D
Z

Rd


.x/ d�t1.x/C
Z t2

t1

Z

Rd

v.t; x/ �r
.x/ d�t .x/ dt (5.3)

for all 
 2 C1c .Rd /.
From (5.3) we can check that the modeling framework just depicted actually

accounts for mass conservation. Assume indeed that there is a compact measurable
set˝ 2 B.Rd / such that supp.�t / � ˝ for all t 2 Œ0; t2� and choose a test function

 with 
 � 1 in ˝ . Thus

Z t2

t1

Z

Rd

v.t; x/ � r
.x/ d�t .x/ dt D
Z t2

t1

Z

˝

v.t; x/ � r
.x/ d�t.x/ dt D 0

for all t 2 Œt1; t2� because�t is zero in R
d n˝ and 
 is constant in˝ . But then (5.3)

implies �t1.˝/ D �t2 .˝/, hence if no mass flows out of˝ the measure of the latter
is conserved in time. The above computations also suggest that the double integral
at the right-hand side of (5.3) accounts for the variation of the mass of measurable
sets due to incoming/outgoing flux.

We defer to Chap. 6 a detailed theory of existence of weak solutions to (5.1). In
this chapter we focus instead on modeling aspects, noting that (5.1) provides the
spatiotemporal evolution of the measure �t as long as the velocity v is specified.
The forthcoming section is thus devoted to constructing v from the reasonings about
pedestrian behavior developed in the first part of the book. In particular, (5.1) will
result in a self-consistent model for �t by expressing v in terms of �t itself, hence
our approach will give rise to first order modeling structures (see Remark 4.1 for a
discussion about first vs second order models).

5.2 Velocity from Planning and Interactions

We assume that the velocity at time t depends on the space x and on the measure�t
as

v.t; x/ D vŒ�t �.x/

D vd.x/C viŒ�t �.x/;
(5.4)
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where the square brackets denote functional relationship with�t . Notice that in (5.4)
it is tacitly assumed that v depends on time through �t only, i.e., that the system we
are dealing with is autonomous.

Equation (5.4) decomposes the velocity into two terms detailed in what follows.

5.2.1 Desired Velocity

The function vd W R
d ! R

d is the desired velocity, i.e., the velocity that
pedestrians would set to reach their destination if they did not experience mutual
interactions (see Sect. 1.1.1). In the simplest case it is a constant field, whereas in
more complicated situations it accounts for the presence of possible obstacles to be
bypassed. In the modeling framework described below, we assume that pedestrians
already know from previous experiences the environment in which they move, hence
the desired velocity is set a priori on the basis of the geometry of the walking
area only. For this reason, the field vd is time-independent. We assume vd be a
conservative velocity field, i.e. vd is derived as the (possibly normalized) gradient
of a scalar potential u:

vd D ru or vd D ru

jruj ; (5.5)

satisfying Laplace’s equation in the spatial domain˝ � R
d of the problem:

	u D 0 in ˝: (5.6)

Suitable boundary conditions on @˝ have to be joined to this equation in order for
vd to point toward pedestrian destinations while bypassing obstacles and avoiding
perimeter walls. For instance, one can prescribe Dirichlet boundary conditions such
that u D 1 on those portions of @˝ coinciding with pedestrian targets (e.g., exits)
and u D 0 on the remaining parts of @˝ . In such a way, owing to the maximum
principle for elliptic equations, it results 0 � u � 1 a.e. in ˝ , thus ru flows from
the minimum u D 0 to the maximum u D 1 and one gets a desired velocity field
actually pointing smoothly toward pedestrian destinations. The idea underlying this
choice is to mimic a simplified dynamics of a fluid entering the domain and then
flowing out through the exits.

Obstacles can be managed in a similar way, setting u D 0 on their boundaries.
Alternatively, at the obstacle boundaries one might replace the Dirichlet condition
with the Neumann one ru � On D 0, where On is the outward normal unit vector.
According to (5.5), this amounts to setting to zero the normal component of vd at
the obstacle walls. If along the perimeter walls one still prescribes the Dirichlet
condition u D 0, then again the maximum principle asserts that u ranges essentially
between 0 and 1 in ˝ , so that the direction of ru is the convenient one for vd as
discussed before.
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a b

Fig. 5.1 Desired velocity field vd computed in a square domain with two obstacles using (5.5)–
(5.6) supplemented by (a) Dirichlet and (b) Neumann boundary conditions at the obstacle walls.
The target of walkers is the thick black portion of the right vertical edge of the domain, where a
unit potential is imposed

Choosing either set of boundary conditions affects, often in a non-negligible
manner, the topological properties of the resulting field vd and the corresponding
pedestrian dynamics as well. Figure 5.1 shows an example of desired velocity field
generated with Dirichlet (Fig. 5.1a) and Neumann (Fig. 5.1b) boundary conditions
at the obstacles. In the former case, pedestrians experience a repulsion from the
obstacle walls, whereas, in the latter case, they are allowed to slide tangentially to
the obstacle edges. As a result, a different access to the available space is induced.
Therefore, the selection of boundary conditions is a real modeling task, which
requires a careful consideration of the pedestrian behavior to be described.

5.2.2 Interaction Velocity

The function viŒ�t � W Rd ! R
d is the interaction velocity, that is, the correction

that pedestrians make to their desired velocity in consequence of the interactions.
The non-locality of the interactions is introduced in this framework by deriving
viŒ�t � from a synthesis of the information on the crowd distribution around each
pedestrian. Specifically, we assume

viŒ�t �.x/ D
Z

Rdnfxg
f .jy � xj/g.˛xy/ y � xjy � xj d�t .y/; (5.7)
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where:

• f W RC ! R is a function describing the interaction strength felt by the walker
in x according to the distance from her neighbors. If supp.f / D Œ0; R� for some
R > 0, then a neighborhood is defined for the point x in which the integral is
actually computed, coinciding with the ball BR.x/.

• ˛xy 2 Œ�
; 
� is the angle between the vectors y � x and vd.x/, that is, the
angle under which a point y is seen from x with respect to the desired direction
of motion.

• g W Œ�
; 
� ! Œ0; 1� is a function which reproduces the angular focus of the
walker in x.

Integration with respect to �t accounts for the mass that the walkers see, consid-
ering that two fundamental attitudes characterize their behavior, cf. Sect. 1.1.1:

• Repulsion, i.e., the tendency to avoid collisions and crowded areas.
• Attraction, i.e., the tendency, under some circumstances, to keep contact with

other group mates (e.g., groups of tourists in guided tours, groups of people
sharing specific relationships such as families or parties).

The following prototypes can be suggested for the repulsion strength f :

f .z/ D
8
<

:
�Fr

z
if 0 � z � Rr

0 otherwise
for repulsion

f .z/ D
(
Faz if 0 � z � Ra
0 otherwise

for attraction;

(5.8)

where Fr ; Fa > 0 are interaction parameters, and Rr; Ra > 0 are repulsion and
attraction radii: Pedestrians are sensitive (i.e., they are repulsed or attracted) to the
crowd mass closer than the given radius. These forms of f translate the basic idea
that repulsion and attraction are inversely and directly proportional, respectively,
to the distance separating the interacting pedestrians. If repulsion and attraction
are simultaneously active, then viŒ�t � is given by the sum of two integrals of the
form (5.7), one for either expression of f .

The function g carries instead the anisotropy of the interactions, which essentially
consists in that pedestrians cannot see all around them and are not equally sensitive
to external stimuli coming from different directions. If N̨ 2 Œ0; 
� is the maximum
sensitivity angular width, a prototype for g is

g.˛/ D
(
1 if � N̨ � ˛ � N̨
0 otherwise

for ˛ 2 Œ�
; 
�: (5.9)
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By differentiating N̨r , N̨c for repulsion and attraction, respectively, it is also possible
to distinguish between different anisotropies due to the different nature of the two
kinds of interaction, cf. Sect. 1.1.1.

Remark 5.3. The model for the velocity field considered here does not make use
of the Fundamental Diagram, see Sect. 4.2.1. The dependence of the speed on the
crowd density is handled directly by formula (5.7).

Remark 5.4. Suitable conditions on f , g must be guaranteed in order for the
integral in (5.7) to be well defined, usually integrability and/or continuity conditions.
We refrain from entering here these issues, which will be extensively dealt with in
Chap. 6. However, we stress that, in this respect, (5.8), (5.9) have to be regarded as
prototypic examples, which catch some physiology but need proper adjustments in
order to match analytical requirements. For instance, one may cut off the singularity
producing an infinite repulsion at z D 0 by modifying the first expression in (5.8) as

f .z/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

�Fr
�

if 0 � z � �

�Fr
z

if � < z � Rr

0 otherwise

where 0 < � < Rr is a parameter. On the other hand, the function (5.9) can be duly
mollified about ˛ D ˙ N̨ as

g.˛/ D
8
<

:
e
� �˛2

N̨2�˛2 if � N̨ < ˛ < N̨
0 otherwise

where � > 0 is a parameter, which enables one to account also for the visual fading
that usually occurs laterally in the visual field when approaching the maximum
angular width.

If, as in the previous examples, supp.f / is compact and g is an even function,
then the domain of integration in (5.7) is actually a bounded subset SR.x/ of the
ball BR.x/ called sensory region or neighborhood of interaction of the point x.
Confining our attention to the two-dimensional case (d D 2), SR.x/ is more
precisely a sector of BR.x/ with angular width 2 N̨ (cf. Fig. 5.2), coinciding with
the whole ball for N̨ D 
 (isotropic interactions). When N̨ < 
 (anisotropic
interactions), the orientation of SR.x/must instead be specified. From the definition
of the angle of interaction ˛xy , the reader can easily verify that, in practice, SR.x/

is symmetric with respect to the direction individuated by vd.x/. Hence we can
provide the explicit definition:

SR.x/ D
�
y 2 R

2 W jy � xj � R; .y � x/ � vd.x/

jy � xj � jvd.x/j � cos N̨
	
; (5.10)



116 5 Multiscale Modeling by Time-Evolving Measures

Fig. 5.2 The interaction neighborhood SR.x/ (gray set) with radius R and angular width 2 N̨ ,
oriented according to the desired velocity vd.x/

a b

Fig. 5.3 The total velocity vŒ�t � of the test pedestrian in x computed for (a) repulsion and (b)
attraction in the sample case of an interaction with one field pedestrian in y

the dot between two vectors standing for the Euclidean inner product. In the
following we drop the subscript R from the notation SR.x/ if not explicitly
requested by the context. Notice that the vector vd.x/ is used to define the
direction of the anisotropy in x. From the point of view of pedestrians, this means
distinguishing what is ahead and what is behind.

With reference to (5.7), it is useful to introduce a specific nomenclature for the
individual in x, who undergoes the interactions, and pedestrians distributed in the
points y of the neighborhood S .x/, who cause the interactions. Mimicking the
terminology adopted in the kinetic theory for active particles, in the sequel we will
call them test pedestrian and field pedestrians, respectively. Figure 5.3 represents
the computation of the interactions between test and field pedestrians as the vector
sum of the desired and the interaction velocities.
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5.2.3 Metric and Topological Interactions

As discussed in Sect. 1.1.1, a further classification of pedestrian interactions,
complementary to the distinction between repulsion and attraction, consists in
characterizing them as metric or topological.

An interaction is metric if the radius R of the corresponding neighborhood of
interaction is set on the basis of a fixed maximal distance at which pedestrians feel
comfortable to interact with other walkers. Consequently, the test pedestrian will
interact with all field pedestrians comprised in SR.x/, no matter how many they are.

Conversely, an interaction is topological if the radius R is tuned by the test
pedestrian in such a way that her neighborhood SR.x/ encompasses a predefined
mass of field pedestrians she agrees to interact with. If M > 0 is such a mass of
field pedestrians, R is in particular the smallest radius necessary for finding at least
the mass M in the interaction neighborhood:

R D minfr > 0 W �t.Sr .x// �M g; (5.11)

where fSr .x/gr>0 is a family of sets defined as in (5.10). Notice that R becomes
now a function of x and indirectly also of t through the functional dependence on
the measure �t : R D RŒ�t �.x/.
Remark 5.5. In (5.11) we prefer the condition�t.Sr .x// �M to the perhaps more
intuitive one �t.Sr .x// DM because in the latter case existence of the minimum
might fail. For instance, this can happen, depending on the value of M , if �t has
some atoms, two or more of which at the same distance from x.

It is plain that, for particular choices of M , the above definition may allow
R ! 1. In order to rule this possibility out, a topological interaction with metric
cutoff can be devised, in which the radius topologically determined via (5.11) cannot
however exceed a predefined maximal threshold NR > 0:

R D minfminfr > 0 W �t.Sr .x// �M g; NRg: (5.12)

This choice, physically more meaningful, means that the test pedestrian might not
be affected by very far field pedestrians e.g., because she cannot see them at all.

As we have seen in Chaps. 1 and 2, repulsion can be regarded as a metric
interaction while attraction as a topological one, possibly with metric cutoff. Thus,
in (5.8) the radius Rr is a model parameter, whereas the radius Ra should be
computed by means of either (5.11) or (5.12).

5.3 Recovering Single-Scale Models

The framework consisting of (5.1), (5.4) is suitable to obtain, as particular cases,
classical spatially discrete and continuous models, that, in analogy with the literature
reviewed in Chap. 4, will be also referred to as microscopic and macroscopic,
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respectively. In this section we discuss the procedure for their individual derivation,
then in the subsequent section we exploit the tools offered by the measure-theoretic
setting in order to merge these concepts into a unique multiscale model, in which
the discrete and the continuous dynamics coexist.

5.3.1 Microscopic Models

Microscopic models aim at catching the evolution of single pedestrians, hence
they are based on a discrete-in-space structure of the mass �t . From the measure-
theoretic point of view, this corresponds to assuming that the measure �t is atomic
and that the whole mass is concentrated in a finite number of points, understood as
the spatial positions of pedestrians.

Let us consider a population of N pedestrians, whose positions at time t are
denoted by fXk.t/, k D 1; : : : ; N g. Let us also denote by fxk.t/, k D 1; : : : ; N g
the geometric points on which the pedestrian mass is concentrated, i.e. the atoms
of the measure �t . In this case, the mass of a set E 2 B.Rd / is the number of
pedestrians contained in E:

�t.E/ D cardfxk.t/ 2 Eg;

hence �t is the counting measure. We represent it as a sum of Dirac masses, each
centered in one of the xk.t/’s:

�t D
NX

kD1
ıxk.t/: (5.13)

Plugging this in (5.2) with v.t; x/ D vŒ�t �.x/ gives

d

dt

NX

kD1

.xk.t// D

NX

kD1
vŒ�t �.x

k.t// � r
.xk.t//; (5.14)

whence, taking the time derivative at the left-hand side and rearranging the terms,

NX

kD1

� Pxk.t/ � vŒ�t �.x
k.t//


 � r
.xk.t// D 0:

The arbitrariness of the test function 
 implies

Pxk.t/ D vŒ�t �.x
k.t//; k D 1; : : : ; N; (5.15)
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therefore the microscopic model specializes in an autonomous dynamical system
of N coupled ordinary differential equations for the xk.t/’s, the coupling being
realized by the measure �t in the velocity field. In particular, the right-hand side
of (5.15) reads

vŒ�t �.x
k.t// D vd.x

k.t//C
X

hD1; :::; N
xh.t/¤xk.t/

f .jxh.t/�xk.t/j/g.˛xk.t/xh.t//
xh.t/�xk.t/
jxh.t/�xk.t/j ;

(5.16)
where the second term at the right-hand side is nothing but viŒ�t �.x

k.t// computed
from (5.7) with the measure (5.13).

Remark 5.6. We point out that, with the function f given by (5.8), the statement
xh.t/ ¤ xk.t/ in the above formula can be converted into the milder one h ¤ k.
Indeed one can prove that if the xk.t/’s are initially all distinct they remain distinct
at all successive times t > 0.

Remark 5.7. In the following we will drop the distinction between the points xk.t/
and Xk.t/, which is basically conceptual, and we will denote both the atoms of
the measure �t and the agents’ positions by Xk.t/. In this way (5.15) assumes the
classical form of a first order differential model, see, for example, (4.5).

5.3.2 Macroscopic Models

Macroscopic models describe the average distribution of the crowd rather than
looking at individual pedestrians, therefore they rely on a continuous-in-space
structure of the mass �t . Technically, they are based on the assumption that the
matter is continuous, which means that there is proportionality between the mass
and the volume of an infinitesimal reference volume dx. This translates, in measure-
theoretic terms, as the measure �t being absolutely continuous with respect to the
d -dimensional Lebesgue measure L d . Under this hypothesis, Radon-Nikodym’s
Theorem asserts that there exists a function �.t; �/ 2 L1loc.R

d / such that

�.t; x/ D lim
r!0C

�t.Br.x//

L d .Br .x//
for a.e. x 2 R

d ;

called the density of �t with respect to L d . In our context �.t; x/ represents the
density of pedestrians at time t in the point x. Notice that �.t; x/ � 0 because �t
is, by assumption, a positive measure.

Using � we have

�t D �.t; �/L d ; (5.17)

m
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hence the mass conservation equation (5.2) with v D vŒ�� rewrites as

d

dt

Z

Rd


.x/�.t; x/ dx D
Z

Rd

vŒ��.t; x/ � r
.x/�.t; x/ dx; (5.18)

namely a weak form of the continuity equation

@�

@t
Cr � .�vŒ��/ D 0: (5.19)

In particular, the velocity is computed from (5.7) with the measure (5.17):

vŒ��.t; x/ D vd.x/C
Z

Rd

f .jy � xj/g.˛xy/ y � xjy � xj�.t; y/ dy; (5.20)

hence the relationship between v and � is a functional dependence formally more
elaborated than the pointwise dependence carried by fundamental diagrams in
nonlinear hyperbolic conservation laws. On the other hand, this integral formulation
is expected to have a smoothing effect on the solutions of the model.

5.4 Multiscale Model

After reobtaining classical microscopic and macroscopic models, now we indicate
how to specialize the modeling framework in order to account simultaneously for
discrete and continuous kinematic effects in the spatiotemporal evolution of crowds.
In particular, we will derive a full range of representation scales, the microscopic
and the macroscopic ones being the two endpoints. This will provide a multiscale
description of crowds, allowing one, in particular, to include the effect of granularity
in the continuous flow.

From the measure-theoretic point of view, we interpolate the discrete and
continuous measures (5.13), (5.17), after renaming them as

mt D
NX

kD1
ıXk.t/; Mt D �.t; �/L d ; (5.21)

where the letters m, M evoke the microscopic and the macroscopic scale, respec-
tively. Specifically, the multiscale mass �t has the following form:

�t D �mt C .1 � �/Mt ; (5.22)

the parameter � 2 Œ0; 1� weighting the coupling between the two scales. Notice that
� D 0 corresponding to a purely continuous model, whereas � D 1 corresponds to
a purely discrete one.
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Plugging the measure (5.22) in the mass conservation equation (5.2), with
v.t; x/ D vŒ�t �.x/, we get

d

dt

 

�

NX

kD1

.Xk.t//C .1 � �/

Z

Rd


.x/�.t; x/ dx

!

D

�

NX

kD1
vŒ�t �.X

k.t// � r
.Xk.t//C .1 � �/
Z

Rd

vŒ�t �.x/ � r
.x/�.t; x/ dx;

(5.23)

formally an interpolation of (5.14), (5.18).
In strong form, the multiscale model can be thought of as convex linear

combination, with coefficients � and 1 � � , of the following equations:

8
<̂

:̂

PXk.t/ D vŒ�t �.Xk.t//; k D 1; : : : ; N;
@�

@t
Cr � .�vŒ�t �/ D 0;

(5.24)

coupled by the transport velocity vŒ�t �, which reads now

vŒ�t �.x/ D vd.x/C �
X

kD1; :::; N
Xk.t/¤x

f .jXk.t/ � xj/g.˛xXk.t//
Xk.t/ � x
ˇ
ˇXk.t/ � xˇˇ

C .1� �/
Z

Rd

f .jy � xj/g.˛xy/ y � xjy � xj�.t; y/ dy; (5.25)

hence it coincides neither with the one of the fully discrete model, cf. (5.16), nor
with the one of the fully continuous model, cf. (5.20). Rather, it comprises both
discrete and continuous contributions to the interaction of the test pedestrian with
field pedestrians.

Assume that the position x of the test pedestrian coincides with one of the atoms
of �t , say x D Xk.t/. Then

viŒ�t �.X
k.t// D �

X

hD1; :::; N
Xh.t/¤Xk.t/

f .jXh.t/ � Xk.t/j/g.˛Xk.t/Xh.t//
Xh.t/ � Xk.t/
ˇ
ˇXh.t/ � Xk.t/

ˇ
ˇ

C .1 � �/
Z

Rd

f .jy �Xk.t/j/g.˛Xk.t/y/
y �Xk.t/
ˇ
ˇy �Xk.t/

ˇ
ˇ�.t; y/ dy

(5.26)

hence the interaction velocity of the test pedestrian does not only depend on other
discrete atoms of �t contained in her neighborhood of interaction (like in a purely

m
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microscopic model) but also on the density distributed therein. In particular, the term

.1 � �/
Z

Rd

f .jy � Xk.t/j/g.˛Xk.t/y/
y � Xk.t/

jy � Xk.t/j�.t; y/ dy

is the continuous contribution to the discrete dynamics. Conversely, if the position
of the test pedestrian does not coincide with any atom of �t , then her interaction
velocity does not only depend on the density distributed in her neighborhood of
interaction (like in a purely macroscopic model) but also on the atoms of �t therein.
Indeed, the term

�
X

kD1; :::; N
Xk.t/¤x

f .jXk.t/ � xj/g.˛xXk.t//
Xk.t/ � x
ˇ
ˇXk.t/ � xˇˇ

expresses in this case the discrete contribution to the continuous dynamics.

Remark 5.8. It is worth spending a few more words about the relationship between
the discrete and the continuous scales in this multiscale coupling, especially when
� takes one of its extreme values.

According to (5.22), (5.23), for � D 0 or � D 1 the model is entirely formulated
at one scale only, in the sense that neither the mass �t nor the evolution equation
includes the other scale. For instance, for � D 0 the model is fully continuous and
coincides with the macroscopic one described in Sect. 5.3. However, temporarily
neglecting (5.23), we see from (5.26) that it is still possible to compute an interaction
velocity for the pointsXk.t/, determined uniquely by the density �:

viŒ�.t; �/�.Xk.t// D
Z

Rd

f .jy � Xk.t/j/g.˛Xk.t/y/
y �Xk.t/
ˇ
ˇy �Xk.t/

ˇ
ˇ�.t; y/ dy:

Consequently, we can define a velocity for the Xk.t/’s as vŒ�.t; �/�.Xk.t// D
vd.X

k.t//CviŒ�.t; �/�.Xk.t// and use it in (5.15). This way, we recover the classical
method for tracking the trajectories of Lagrangian particles flowing passively
in an Eulerian continuous medium, whose motion is known from independent
calculations.

By far less classical is the situation for � D 1, when the model is fully discrete
and coincides with the microscopic one described in Sect. 5.3. Equation (5.25)
shows that it is still possible to compute a transport velocity for the distribution �,
determined uniquely by the atoms Xk.t/’s:

vŒfXk.t/gk�.x/ D vd.x/C
X

kD1; :::; N
Xk.t/¤x

f .jXk.t/� xj/g.˛xXk.t//
Xk.t/ � x
ˇ
ˇXk.t/ � xˇˇ : (5.27)
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Using this in (5.19) we can compute a posteriori the spatiotemporal evolution of �
driven by the atoms Xk.t/’s.

For examples of a discrete dynamics ruled by a continuous one, and vice versa,
we refer the reader to the numerical experiment on the shape of a crowd discussed
in Sect. 2.2.

Dimensional Analysis and Scaling

The multiscale coupling requires, as a major point, to scale correctly the discrete
and continuous kinematic contributions. This issue leads ultimately to a dimensional
analysis of the presented equations, that we will carry out by switching to the non-
dimensional form of the model. For this, we preliminarily observe that the main
quantities involved in the equations have the following dimensions:

• Œt � D time
• Œx� D length
• Œv� D Œvd� D Œvi� D length/time
• Œf � D length/(time 	 pedestrians)
• Œ�t � D pedestrians
• Œ�� D pedestrians/lengthd

where “pedestrians” is actually a dimensionless unit. Additionally, g and � are
dimensionless. We let L, V , O� be characteristic values of length, speed, and density,
respectively. They are used to define the following non-dimensional variables and
functions:

x� D x

L
; t� D V

L
t;

v�d .x�/ D
1

V
vd.Lx

�/; v�i Œ��t� �.x
�/ D 1

V
viŒ� L

V t
� �.Lx�/;

f �.z�/ D 1

V
f .Lz�/;

��.t�; x�/ D 1

O��
�
L

V
t�; Lx�

�
; Xk;�.t�/ D 1

L
Xk

�
L
V
t�
�
:

(5.28)

In more detail, the infinitesimal non-dimensional mass measure d��t� is given by

d��t�.x
�/ D d�L

V t
�.Lx

�/

D �
NX

kD1
dıLXk;�.t�/.Lx

�/C .1 � �/ O���.t�; x�/ Lddx�
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D �
NX

kD1
dıXk;�.t�/.x

�/C .1 � �/���.t�; x�/ dx�

D �dm�t�.x�/C .1 � �/�dM �t�.x�/

where we have set

� WD O�Ld (5.29)

and we have recognized the dimensionless discrete and continuous masses:

m�t� D
NX

kD1
ıXk;�.t�/; dM �t�.x

�/ D ��.t�; x�/ dx�:

We notice that the coefficient � has unit Œ�� = pedestrians, therefore it is a non-
dimensional number fixing the scaling between the discrete and the continuous
mass. It says how many atoms a unit density in the infinitesimal reference volume
dx� corresponds to, in average.

It is worth stressing that

��t� D �m�t� C .1 � �/�M �t� (5.30)

can be properly read as the interpolation between the discrete and the continuous
masses only if m�t�.R

d / and M �t�.R
d / are, up to scaling, the same mass, i.e.,

provided m�t�.R
d / D �M �t�.R

d /. Since the multiscale model is based on mass
conservation, and furthermore, as we will see in Chap. 6, the discrete and continuous
masses are individually conserved in time, this requirement can be fulfilled by
choosing the scaling parameter� as

� D m�0 .Rd /
M �0 .Rd /

D N

M �0 .Rd /
; (5.31)

m�0 .Rd /, M �0 .Rd / being the initial discrete and continuous masses, respectively.

Remark 5.9. We will henceforth always refer to the non-dimensional form of the
equations, omitting however the asterisks on the non-dimensional variables for
brevity. Using (5.28), (5.29) the reader can convince herself that, in practice, all
formulas written in Sect. 5.4 before this dimensional analysis remain formally the
same, provided all quantities are understood as dimensionless and � is replaced by
�� in the expressions of the interaction velocity.



5.5 Multiscale Numerical Scheme 125

5.5 Multiscale Numerical Scheme

In this section we propose a scheme for the numerical approximation of the
multiscale model. A detailed analysis of convergence and error estimates will be
proposed in Chap. 6. Here we focus instead on the formal derivation of the scheme
from the measure-theoretic structures presented in the previous sections.

The construction of the scheme is organized in two steps. First we discretize the
time variable, obtaining a discrete-in-time model in which a sequence of measures
is recursively generated via a transport of mass at discrete time instants. Next, in
order to approximate the continuous part of the mass, we discretize also the space
variable, ending up with an iterative formula that can be implemented on a computer
following the lines of the pseudo-code reported in Appendix B.

5.5.1 Discrete-in-Time Model

Let us consider a finite time interval Œ0; T �, where T > 0 is some final time, and let
us introduce over it the lattice

0 D t0 < t1 < � � � < tn < � � � < tNT D T

with (possibly adaptive) time steps 	tn D tnC1 � tn, n D 0; : : : ; NT � 1. Denoting
�n WD �tn , and analogously vn.�/ WD v.tn; �/, if we collocate (5.3) between the
points tn and tnC1 we find

Z

Rd


.x/ d�nC1.x/ �
Z

Rd


.x/ d�n.x/ D
Z tnC1

tn

Z

Rd

v.t; x/ � r
.x/ d�t.x/ dt

D 	tn
Z

Rd

vn.x/ � r
.x/d�n.x/Co.	tn/;

whence
Z

Rd


.x/ d�nC1.x/ D
Z

Rd

.
.x/C	tn vn.x/ � r
.x// d�n.x/C o.	tn/:

To go on, let us explicitly assume that �n.Rd / < C1 and that vn is uniformly
bounded. As we will see in Chap. 6, this is precisely the case with the velocity
field (5.4), provided singularities in the interaction strength f are cut off. Then
Taylor’s expansion gives 
.x/C	tn vn.x/ � r
.x/ D 
.xC	tn vn.x//C o.	tn/,
thus the previous calculation can be continued as

Z

Rd


.x/ d�nC1.x/ D
Z

Rd


.x C	tn vn.x// d�n.x/C o.	tn/:
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In order to obtain a computable equation, we must disregard the error term o.	tn/

at the right-hand side while still enforcing equality with the left-hand side. This way
we slightly depart from the original equation and arrive at

Z

Rd


.x/ d�nC1.x/ D
Z

Rd


.�n.x// d�n.x/; (5.32)

where we have defined the flow map �n W Rd ! R
d ,

�n.x/ WD x C vn.x/	tn:

Notice that, under the assumption �n.Rd / < C1 for all n, (5.32) does not only
make sense for 
 2 C1c .Rd / but actually for every bounded and Borel test function.
In particular, choosing 
 D �E for some measurable set E and observing that
�E.�n.x// D ���1

n .E/.x/ we obtain

�nC1.E/ D �n.��1n .E//; 8E 2 B.Rd /; (5.33)

meaning that the measure �nC1 is the push forward of �n via the flow map �n, also
written �nC1 D �n#�n (cf. Appendix A). In conclusion, if N� is some prescribed
initial condition, we have obtained the discrete-in-time model

(
�nC1 D �n#�n; n D 0; : : : ; NT � 1
�0 D N�;

which recursively generates a sequence of measures f�ngNTnD1 approximating the
mapping t 7! �t which solves (5.1).

Remark 5.10. The push forward �nC1 D �n#�n expresses a conservative transport
of mass under a Lagrangian point of view during each time step. Indeed, the
space coordinate is referred to the starting configuration at time tn, and the particle
occupying the position x is followed to its new position �n.x/ at the next time tnC1.

In the multiscale framework, the measure �n has the structure

�n D �mn C .1 � �/�Mn;

where mn, Mn are the corresponding time discretization of the discrete and
continuous masses mt , Mt , respectively. Then the linearity of the push forward
operator #� entails

�nC1 D �.�n#mn/C .1 � �/�.�n#Mn/: (5.34)

Let us examine in particular the first term at the right-hand side. If we representmn

as mn D PN
kD1 ıXkn with Xk

n WD Xk
tn

, then we get �n#mn D PN
kD1 �n#ıXkn . But the
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measure �n#ıXkn is such that, for all E 2 B.Rd /,

.�n#ıXkn /.E/ D ıXkn .��1n .E// D
(
1 if Xk

n 2 ��1n .E/, �n.X
k
n / 2 E

0 otherwise,

hence it coincides actually with the measure ı�n.Xkn /. It follows that

�n#mn D
NX

kD1
ı�n.Xkn /

is the discrete partmnC1 of the mass �nC1, the atoms of �n being transported in one
time step to the new points

Xk
nC1 WD �n.Xk

n / D Xk
n C vŒ�n�.X

k
n /	tn; (5.35)

where we have specified vn D vŒ�n� in the expression of �n. Equation (5.35)
corresponds to discretizing (5.15) in time by a classical explicit Euler scheme.

5.5.2 Spatial Approximation

In Chap. 6 we will prove that, under some reasonable assumptions on the flow map,
�n#Mn in (5.34) is, as expected, the continuous partMnC1 of the mass�nC1. For the
moment we simply trust this and study how to approximate it via a suitable spatial
discretization. We address the latter in the abstract on the whole space R

d , also in
view of the forthcoming theoretical analysis.

Remark 5.11. Coherently with the previous notations, we denote by �n the density
at time tn. In addition, space-approximate quantities will be indicated by the
symbolQover the quantities.

We partition R
d in pairwise disjoint d -dimensional cells Ei 2 B.Rd /, where

i D .i1; : : : ; id / 2 Z
d is a multi-index. In the simplest case, which we will focus

on in the following, the Ei ’s are cubic cells with characteristic edge size 	x > 0,
centered at xi D i	x (see Fig. 5.4):

Ei D
d	̀D1


i` � 1

2
; i` C 1

2

�
	x:

More generally, however, the Ei ’s may have different shape and/or size from one
another if different spatial resolution is required in different areas of the domain.

We approximate �n on the spatial mesh fEigi2Zd by a piecewise constant function
Q�n, i.e.
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Fig. 5.4 Portion of a mesh in
R
2 with square-shaped cells

Q�n.x/ D
X

i2Zd
�in�Ei .x/;

where �in is the value of the density in the center of the cell Ei at time tn.
Consequently, the measure Mn is approximated by the piecewise constant

measure d QMn D Q�n dL d , which entails for �n the approximation Q�n D �mn C
.1 � �/� QMn.

Analogously, we approximate the velocity vŒ�n� by a piecewise constant field

QvŒ Q�n�.x/ D
X

i2Zd
vŒ Q�n�.xi /�Ei .x/;

where

vŒ Q�n�.xi / D vd.xi /C �
X

kD1; :::; N
Xkn¤xi

f .jXk
n � xi j/g.˛xiXkn /

Xk
n � xi

jXk
n � xi j

C .1 � �/�
X

j2Zd
�jn

Z

Ej

f .jy � xi j/g.˛xi y/
y � xi
jy � xi j dy: (5.36)

The integral on Ej can be further approximated by suitable quadrature formulas.
Due to the compactness of the supports of f and g, its computation actually involves
only the elements of the spatial mesh having a nonempty intersection with the
interaction neighborhood S .xi / of the point xi .

The discretization of the velocity gives rise to a corresponding discretization of
the flow map:
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Q�n.x/ D x C QvŒ Q�n�.x/	tn;

which turns out to be a piecewise translation because QvŒ Q�n� is constant, by
construction, in each cell.

Now we prepare for advancing to the next time tnC1 by enforcing a piecewise
constant approximation QMnC1 of MnC1, i.e., we look for d QMnC1 D Q�nC1 dx. The
unknowns to be determined are therefore the coefficients f�inC1gi2Zd . In order to
make the step, we mimic the formulaMnC1 D �n#Mn by imposing the push forward
of QMn via the flow map Q�n:

QMnC1.E/ D QMn. Q��1n .E//; 8E 2 B.Rd /:

In particular, choosing E D Ei yields

	xd�inC1 D
Z

Q��1
n .Ei /

Q�n.x/ dx D
X

j2Zd

Z

Q��1
n .Ei /\Ej

Q�n.x/ dx

D
X

j2Zd
�jnL

d . Q��1n .Ei/ \Ej /;

with 	xd D L d .Ei /. Invoking the invariance of Lebesgue measure under
translations (see Fig. 5.5) we obtain L d . Q��1n .Ei/ \ Ej / D L d .Ei \ Q�n.Ej //,
whence finally

�inC1 D
1

	xd

X

j2Zd
�jnL

d .Ei \ Q�n.Ej //: (5.37)

This equation provides an explicit scheme for computing the coefficients of Q�nC1
from those of Q�n. Notice, in particular, that the set Q�n.Ej / is simply obtained by
translation as EjCvŒ Q�n�.xj /	tn, thus it is much easier to construct than the inverse
image Q��1n .Ei /.

In order to advance in time the atoms of Q�n, we apply (5.35) complemented with
the spatial discretization of the density. In practice, we enforce the relationship:

Xk
nC1 D Xk

n C vŒ Q�n�.Xk
n /	tn (5.38)

with

vŒ Q�n�.Xk
n / D vd.X

k
n /C �

X

hD1; :::; N
Xhn¤Xkn

f .jXh
n �Xk

n j/g.˛Xkn Xhn /
Xh
n �Xk

nˇ̌
Xh
n �Xk

n

ˇ̌

C .1 � �/�
X

i2Zd
�in

Z

Ei

f .jy � Xk
n j/g.˛Xkn y/

y � Xk
nˇ

ˇy � Xk
n

ˇ
ˇ dy: (5.39)
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Fig. 5.5 Pictorial
representation of the action of
the mapping Q�n on the mesh
cells. Notice that Ei \ Q�n.Ej /
and Q��1

n .Ei /\Ej are not the
same set, but they have the
same volume because of the
invariance of Lebesgue
measure under translations

Again, the integral on Ei can be approximated by classical quadrature formulas,
taking into account that it has actually to be computed only for those cells
intersecting the interaction neighborhood S .Xk

n /.
To sum up, the multiscale numerical scheme we have presented is a time-explicit

scheme, which enables one to compute fXk
nC1gNkD1, f�inC1gi2Zd at time tnC1 from

the corresponding quantities at the previous time tn. To this purpose, (5.37), (5.38)
must be applied, supplemented by the velocity fields (5.36), (5.39), respectively.

5.5.3 The Algorithm

We end this section by discussing how a computational algorithm, stemming from
the above multiscale numerical scheme, can be conceptually organized. The line of
thought exposed here will directly result in the pseudo-code reported in Appendix B.

The algorithm is structured in a discrete and a continuous part. The former
handles the evolution of the atoms of �n, updating a vector which stores the values
Xk
n . The latter manages instead the evolution of the density, updating at every time

step the values �in in the cells of the spatial mesh. The two models evolve by means
of the same velocity field QvŒ Q�n�, which has to be defined both at the atoms’ positions
fXk

n gNkD1 (for the discrete part) and at the centers fxi gi2Zd of the mesh cells (for the
continuous part).

Let us introduce the following superscripts:

• Micro: Quantities defined at points Xk
n .

• Macro: Quantities defined at points xi .
• Micro-for-micro: Quantities pertaining to the discrete (microscopic) part of the

algorithm, computed at points Xk
n .

m
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• Micro-for-macro: Quantities pertaining to the discrete (microscopic) part of the
algorithm, computed at points xi .

• Macro-for-micro: Quantities pertaining to the continuous (macroscopic) part of
the algorithm, computed at points Xk

n .
• Macro-for-macro: Quantities pertaining to the continuous (macroscopic) part of

the algorithm, computed at points xi .

The algorithm consists of the following steps.

1. Initialization. Fix the number N of atoms of the mass, define their initial
positions fXk.0/gNkD1, and compute the values �i0 of the initial density according
to a local average of the discrete mass, taking the scaling (5.31) into account.
More precisely, we suggest to set:

�i0 D
m0.B�.xi //

�L d .B�.xi //
;

wherem0 is the discrete mass at the initial time andB�.xi / the ball centered in the
center of the cell Ei with radius � > 0. The latter is tuned depending on the posi-
tions Xk.0/ of the atoms, in such a way that the relation � D m0.R

d /= QM0.R
d /

be approximately satisfied ( QM0 being the approximate macroscopic mass at the
initial time). It is worth pointing out that if one replaces B�.xi / with the cell
Ei itself then the measures m0, QM0 satisfy the scaling (5.31) exactly. However,
averaging on a neighborhood slightly larger than a single grid cell is essential in
order to have a density really distributed in space rather than clustered in mesh
cells.

2. Discrete part. At time tn, compute the first sum at the right-hand side of (5.39)
for each k D 1; : : : ; N , obtaining

vmicro-for-micro;k
i WD viŒmn�.X

k
n /:

Then compute the first sum at the right-hand side of (5.36) for each i 2 Z
d to get

vmicro-for-macro;i
i WD viŒmn�.xi /;

which will be shared with the continuous part of the algorithm.
3. Continuous part. At time tn, evaluate the integrals at the right-hand side of (5.36)

for each i 2 Z
d , which gives

vmacro-for-macro;i
i WD viŒ QMn�.xi /:

For instance, a zeroth-order quadrature formula can be used:

Z

Ej

f .jy � xi j/g.˛xi y/
y � xi
jy � xi j dy � f .jxj � xi j/g.˛xi xj /

xj � xi
jxj � xi j	x

d
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for all j ¤ i such that Ej \S .xi / ¤ ;. Similarly, evaluate the integrals at the
right-hand side of (5.39) for each k D 1; : : : ; N to find

vmacro-for-micro;k
i WD viŒ QMn�.X

k
n /;

which will be shared with the discrete part of the algorithm.
4. Desired velocity. If the desired velocity is given analytically, the computation of

vmicro;k
d WD vd.X

k
n /; vmacro;i

d WD vd.xi /

for each k D 1; : : : ; N and each i 2 Z
d is straightforward. If instead vd is known

only at discrete points, then vmicro;k
d , vmacro;i

d have to be computed by interpolation.
This is, for instance, the case of the desired velocity obtained from (5.5), as
Laplace’s equation (5.6) is likely to be solved by an approximate numerical
procedure. Since we are assuming that all continuous quantities are piecewise
constant, the coherent choice is a zeroth-order interpolation.

5. Total velocity. Assemble the previous pieces of the velocity as

vmicro;k WD vŒ Q�n�.Xk
n /

D vmicro;k
d C �vmicro-for-micro;k

i C .1� �/�vmacro-for-micro;k
i ;

and analogously

vmacro;i WD vŒ Q�n�.xi /
D vmacro;i

d C �vmicro-for-macro;i
i C .1 � �/�vmacro-for-macro;i

i :

6. Computation of the time step. Apply the following CFL condition:

	tn max
i2Zd
jvmacro;i j D 	x (5.40)

for computing the time step needed to advance to the next time tnC1. As we will
see in Chap. 6, condition (5.40) is actually not necessary for the stability of the
algorithm (like e.g., in the numerical approximation of hyperbolic conservation
laws), but it is useful for accuracy and simplicity of implementation. On the one
hand, it guarantees that the push forward operated by the approximate flow map
Q�n does not generate spurious singularities in Q�n besides the atoms Xk

n . On the
other hand, it makes it sufficient in (5.37) to consider, for each i 2 Z

d , only the
cells Ej adjacent to Ei , as intersections Ei \ �n.Ej / involving farther cells Ej
are empty. In fact, condition (5.40) implies that the maximum displacement of a
cell Ej produced by the mapping Q�n is at most 	x.

7. Advancing in time. Update �in, Xk
n to �inC1, Xk

nC1, respectively, by means
of (5.37), (5.38), using vmacro;i , vmicro;k , and the time step 	tn previously
determined.
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5.6 Two-Population Models

The measure-based model has been described so far with reference to a single
crowd. However, some numerical experiments in Chap. 2 pointed out that many
interesting applications, especially concerned with self-organization issues, imply
the interaction between two groups of walkers, see, e.g., Fig. 2.16. In order to
address such problems, it is necessary to further develop the modeling structures
presented in this chapter, so as to account for cross-interactions occurring between
different pedestrian populations. For the sake of simplicity, we will consider in
the sequel the case of two populations only. Generalization of the forthcoming
discussion to more than two populations is mainly a technical matter, involving more
elaborated notations and, after all, not really fundamental for applicative purposes.

Let p 2 f1; 2g be the population index, and q its conjugate index denoting the
other population (i.e., q D 2 when p D 1 and q D 1 when p D 2). Either
population is represented by its mass measure�pt , satisfying the continuity equation:

@�
p
t

@t
Cr � .�pt vpŒ�pt ; �

q
t �/ D 0: (5.41)

Notice that now the velocity of the pth population depends also on the mass of the
qth population. This translates the influence of the latter on the dynamics of the
former. In more detail, the proposed expression of vp is as follows:

vpŒ�pt ; �
q
t �.x/ D vpd .x/C .1 ��p/vpi Œ�

p
t �.x/C�pvpqi Œ�

q
t �.x/; (5.42)

where

• vpd is the desired velocity of population p, obviously unaffected by population q
as it refers to the ideal situation in which pedestrians do not experience mutual
interactions.

• vpi Œ�
p
t � is the usual interaction velocity internal to population p, i.e., the

correction that the test pedestrian of population p makes to her desired velocity
due to the presence of field pedestrians of her own population. Hence vpi depends
on �pt only, and is expressed as

vpi Œ�
p
t �.x/ D

Z

Rdnfxg
f p.jy � xj/gp.˛xy/ y � xjy � xj d�

p
t .y/: (5.43)

In this context, we refer to vpi Œ�
p
t � as the self-interaction velocity.

• vpqi Œ�
q
t � is the cross-interaction velocity, i.e., the correction to vpd stemming

from the interactions that the test pedestrian of population p experiences with
surrounding field pedestrians of population q. Therefore it depends on the mass
�
q
t , and is expressed as:

vpqi Œ�
q
t �.x/ D

Z

Rdnfxg
f pq.jy � xj/gpq.˛xy/ y � xjy � xj d�

q
t .y/: (5.44)
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If supp.f p/ ¤ supp.f pq/ or supp.gp/ ¤ supp.gpq/, then the self-interaction
neighborhood S p.x/ is different from the cross-interaction neighborhood
S pq.x/ because of either a different radius or a different angular width. For
instance, in case of crossing flows (cf. Sect. 2.5) the interaction with opposite
walkers may require more promptness, hence a larger radius, than interactions
with group mates.

• �p 2 Œ0; 1� is a parameter weighting the contribution of cross-interactions with
respect to self-interactions in the dynamics of population p. Notice that if �p D
0 then population p is totally insensitive to population q, and from (5.41) to
(5.44) one recovers the model discussed in the previous sections of this chapter
for a single crowd. Conversely, if �p D 1 then pedestrians of population p do
not interact among each other, the only important interactions being those with
pedestrians of population q. Finally, with 0 < �p < 1 a coupling between self-
and cross-dynamics is realized.

By detailing the multiscale structure of the measures �pt , �qt in (5.42), the total
interaction velocity for population p takes the form of a combination of self- and
cross- discrete and continuous contributions:

vpi Œ�
p
t ; �

q
t �.x/ D .1 ��p/�p

X

kD1; :::; Np

Xk;p .t/¤x

f p.jXk;p.t/� xj/gp.˛xXk;p.t//
Xk;p.t /� x
ˇ
ˇXk;p.t/� xˇˇ

„ ƒ‚ …
interaction with microscopic pedestrians

of the same population

C .1 ��p/.1 � �p/�p

Z

Rd

f p.jy � xj/gp.˛xy/ y � xjy � xj�
p.t; y/ dy

„ ƒ‚ …
interaction with the macroscopic density

of the same population

C�p�q
X

kD1; :::; N q

Xk;q .t/¤x

f pq.jXk;q.t /� xj/gpq.˛xXk;q .t//
Xk;q.t /� x
ˇ
ˇXk;q.t /� xˇˇ

„ ƒ‚ …
interaction with microscopic pedestrians

of the other population

C�p.1 � �q/�q

Z

Rd

f pq.jy � xj/gpq.˛xy/ y � xjy � xj�
q.t; y/ dy

„ ƒ‚ …
interaction with the macroscopic density

of the other population

;

where, with obvious meaning of the symbols, Np , Nq denote the number of
microscopic pedestrians in populations p and q, respectively (and similarly for the
densities �p, �q), whereas fXk;p.t/gNp

kD1, fXk;q.t/gNq

kD1 are their positions. Each of
the four terms at the right-hand side can be further split in two if f p , gp or f pq ,
gpq contain both repulsion and attraction effects.
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As far as the multiscale representation is concerned, we observe that, in principle,
either population has its own parameters �p and �p . This framework enables thus
one to account for different scalings within the two interacting crowds, see Fig. 2.23.

5.7 Bibliographical Notes

Sections 5.1–5.3 The measure-based modeling techniques for pedestrian flows
have been introduced in Cristiani et al. [47], Piccoli and Tosin [144,145] inspired
by [31, 32].

Sections 5.4 and 5.5 Measure-based techniques have been specialized to multi-
scale issues, from the point of view of both modeling and numerical implemen-
tation, in Cristiani et al. [48]. References to other possible ways of understanding
multiscale approaches in the mathematical modeling literature can be found in
the bibliographical notes of Chap. 1.

Section 5.6 Measure-based equations for two interacting crowds are simulated in
Cristiani et al. [48] and detailed here for the first time. A systematic existence
and uniqueness theory of weak measure solutions for systems of PDEs with two
populations is developed by Di Francesco and Fagioli [61], see also Piccoli and
Rossi [141].



Chapter 6
Basic Theory of Measure-Based Models

Abstract This chapter is devoted to the mathematical foundations of the model
introduced in Chap. 5. Contents go continuously back and forth between modeling
and analysis, however with a more formal approach than that used in the pre-
vious chapter. The first three sections, from Sects. 6.1 to 6.3, discuss how the
measure-based model can be derived from a particle description of pedestrians,
thereby formalizing the link between individualities and collectivity which is at the
basis of most of the complexity of crowd behaviors. In addition, in the light of
such a derivation they propose a probabilistic reading of the measure-based model,
which turns out to be particularly meaningful for applications. The central part
of the chapter, encompassing Sects. 6.4–6.7, is concerned with the basic theory of
well-posedness and numerical approximation of measure-valued Cauchy problems
for first order models based on conservation laws, also in a multiscale perspective.
Minimal generic assumptions are stated in order to achieve proofs, to be regarded
possibly also as guidelines in the modeling approach. Finally, Sect. 6.8 resumes
the discussion about the crowd model presented in Chap. 5 studying under which
conditions it is in the scope of the theory set forth in the preceding sections.

6.1 Phenomenological Model with Perception

In order to motivate phenomenologically the model with measures, cf. (5.1), we start
from a model at the scale of the individuals (probably the most natural one at which
a crowd can be physically observed and described), which tries to incorporate the
concept of human perception.

Let X D X.t/ 2 R
d be the position in space of a generic virtual pedestrian,

that we will henceforth call test pedestrian, at time t � 0. Once an initial position
X.0/ D Nx 2 R

d is picked the mapping t 7! X.t; Nx/ denotes the trajectory
of the particular pedestrian starting from Nx at the initial time. Resting on the
phenomenology implemented in Sect. 5.2, we consider that pedestrians regulate
their velocity on the basis of a local preferred path (desired velocity vd) and of the

E. Cristiani et al., Multiscale Modeling of Pedestrian Dynamics, MS&A 12,
DOI 10.1007/978-3-319-06620-2__6,
© Springer International Publishing Switzerland 2014

137
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Fig. 6.1 Human perception can cause pedestrians to react to the gross space occupancy in front of
them, seen as a density distribution, rather than to single individuals, or to a mix of the twos

interactions they experience with other surrounding walkers (interaction velocity vi).
The key point is that we further assume that microscopic interactions are mediated
by the perception that each individual has of the surrounding crowd distribution.
In particular, such a perception need not be “internal” to the microscopic scale.1

For instance, the most common case is when pedestrians react to the gross space
occupancy in front of them, without considering other walkers individually, pretty
much in the spirit of Fig. 6.1. This can be modeled by assuming that the interaction
velocity of the test pedestrian stems from a scanning of the mass�t distributed in her
interaction neighborhood S .X/, deferring to the spatial structure of the measure to
translate the kind of perception activated by the individualX :

vi D
Z

S .X/

K.X; y/ d�t .y/:

Here,K W Rd 	Rd ! R
d is an interaction kernel (to be possibly modeled by means

of the functions f , g as indicated in (5.7)) which accounts for single interaction
instances between the test pedestrian and the (infinitesimal) mass d�t she perceives
in the point y 2 S .X/. The velocity vi can also include additional terms related to
the interaction of the test pedestrian with the environment (e.g., walls and obstacles),
similarly to the microscopic force models described in Sect. 4.1.1. Alternatively, this
interaction can be described in terms of appropriate boundary conditions.

An evolution equation for X can then be proposed in the following form:

PX D vd.X/C
Z

S .X/

K.X; y/ d�t.y/: (6.1)

1Cf. the mean field models discussed in Sect. 4.4.6, which assume that microscopic pedestrians are
able to see the local macroscopic density and to use this information for assessing their optimal
trajectories.
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If perception is individual-by-individual (i.e., pointwise) then the measure �t
should be chosen as the counting one:

�t D
NX

kD1
ıxk.t/; (6.2)

where fxk.t/gNkD1 are the atoms where the mass of, say, N walkers forming
the crowd is concentrated at time t . Plugging this into (6.1) specializes the
phenomenological model as:

PX D vd.X/C
NX

kD1
xk2S .X/

K.X; xk/:

Conversely, if perception is addressed to the crowd ahead as a whole then the
measure �t should be chosen as an absolutely continuous one:

d�t .y/ D �.t; y/ dy;

� W Œ0; C1/ 	 R
d ! Œ0; C1/ being the space density of the crowd at time t .

Hence the phenomenological model (6.1) takes the form:

PX D vd.X/C
Z

S .X/

K.X; y/�.t; y/ dy:

Remark 6.1. In order to better understand the relationship between the variable X
and the measure �, we can establish the following heuristic proportion:

X W � D individuality W collectivity:

X models a generic representative individual within the collective distribution
� of walkers. In particular, (6.1) captures the point of view of the test pedes-
trian immersed in the crowd, who cannot be aware of, and consequently cannot
voluntarily produce, collective behaviors because her perception of other group
mates is limited to her interaction neighborhood S .X/. For this reason collective
behaviors are usually described as spontaneous, emergent, self-organized. They can
be observed from a point of view external to the crowd, such as the one provided
by the measure �. This motivates the search for a model for � consistent with (6.1),
which will be the object of the next sections.



140 6 Basic Theory of Measure-Based Models

6.2 From the Phenomenological to a Mathematical-Physical
Model

The phenomenological model (6.1) involves two state variables, X and �, so far
correlated only at a conceptual, but not yet formal, level. A formal link can be
established via the following argument: The crowd mass �, regardless of its specific
spatial structure, is a material quantity for pedestrians, i.e., it has to move coherently
with the motion of walkers. Indeed, it is the latter who generate the mass itself. This
implies that � is transported byX , so that, given a mass distribution �0 at the initial
time, we can set, for all successive times t > 0,

�t D X.t/#�0; (6.3)

which means

�t.E/ D �0.X.t/�1.E// D �0.fX.0/ 2 R
d W X.t/ 2 Eg/

for every measurable set E 
 R
d . In particular, fX.0/ 2 R

d W X.t/ 2 Eg has to be
understood as the set of all possible initial positions whence the test pedestrian can
start in order to be in the set E at time t > 0.

From (6.1) to (6.3) it is possible to derive formally an equation for the measure
�t . For this, we technically regard the mapping t 7! �t as a curve in the space
of distributions, i.e., the dual space of C1c .Rd /. Then, after picking a test function

 2 C1c .Rd /, we compute the time derivative of �t as:

d

dt
h�t ; 
i D d

dt

Z

Rd


 d�t D d

dt

Z

Rd


.X/ d�0 D
Z

Rd

r
.X/ � PX d�0

D
Z

Rd

r
.X/ �
�

vd.X/C
Z

S .X/

K.X; y/ d�t .y/

�
d�0

D
Z

Rd

r
 �
�

vd C
Z

S .�/
K.�; y/ d�t .y/

�
d�t ; (6.4)

where h�; �i denotes the duality pairing in C1c .Rd /. After defining

vŒ�t �.x/ WD vd.x/C
Z

S .x/

K.x; y/ d�t .y/; (6.5)

we recognize in (6.4) a weak form of the equation

@�t

@t
Cr � .�tvŒ�t �/ D 0; (6.6)

i.e., exactly Eq. (5.1) which in Chap. 5 was directly postulated a priori out of
phenomenological arguments.
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6.3 Probabilistic Interpretation

By carefully inspecting the previous two sections it turns out that, despite (6.3),
the quantitative characterization of � as precisely the mass of the crowd has not
been fully established yet. In fact, for the moment � can be in principle any
measure transported by X , which simply plays a role in determining the way the
test pedestrian interacts with the rest of the crowd. The goal of this section is to
fill such a gap by proposing a suitably new reading of �, which both enriches the
modeling perspective and is technically useful for the next qualitative analysis.

Let us consider N variables X1; X2; : : : ; XN modeling the positions in time
of the various walkers composing the crowd. Any of them is actually a particular
instance of the test pedestrian, therefore the trajectories t 7! Xk.t/ are technically
obtained as

Xk.t/ D X.t; Nxk/; k D 1; : : : ; N; (6.7)

where Nxk is the initial position of the k-th walker.
Assume now that the Nxk’s are not deterministically known. In fact, very often

a statistical estimate of the starting configuration of the crowd in an area of
interest is the only reasonable information on which to ground predictions at future
times. Thus the Nxk’s have to be regarded as random variables, which for the sake
of simplicity we consider independent and identically distributed. Let �0 be a
probability measure on R

d representing their law:

�0.R
d / D 1

�0.E/ D Prob. Nxk 2 E/; 8E 
 R
d measurable:

If we think of the initial mass �0 as proportional to the probability of finding
pedestrians in certain areas of the space domain, we further have:

�0 D N�0; (6.8)

in such a way that the total initial mass coincides with the total number of
pedestrians, �0.Rd / D N .

Owing to (6.7) the uncertainty in the initial positions is transported at all future
times, thereby inducing a probability distribution also on the variablesXk.t/, t > 0:

Prob.Xk.t/ 2 E/ D Prob.X.t; Nxk/ 2 E/
D Prob. Nxk 2 X.t/�1.E//
D �0.X.t/�1.E// D .X.t/#�0/.E/; 8E 
 R

d measurable;
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whence we see that the (common) law of the Xk.t/’s is the measure �t WD X.t/#�0.
Recalling (6.3) and (6.8), this further implies �t D N�t .

Given the proportionality just stated between �t and �t , an evolution equation for
the latter can be derived straightforwardly from (6.6):

@�t

@t
Cr � .�tvŒ�t �/ D 0; (6.9)

where by vŒ�t � we mean

vŒ�t �.x/ D vd.x/CN
Z

S .x/

K.x; y/ d�t .y/: (6.10)

Now it remains to show that this discussion does indeed legitimate the initial
heuristic interpretation of � as the crowd mass. For this, let us introduce the random
variable YE.t/ which counts the number of pedestrians contained in a measurable
set E 
 R

d at time t :

YE.t/ D
NX

kD1
�E.X

k.t//: (6.11)

Its expectation can be computed through the law �t of the Xk.t/’s as:

E ŒYE.t/� D
NX

kD1
E
�
�E.X

k.t//

 D N

Z

Rd

�E d�t D N�t .E/ D �t.E/:

Therefore, �t is ultimately the crowd mass in the sense of the average number
of pedestrians occupying a given spatial area at time t . This is a kind of physical
information at the macroscale stemming from a collective look at the crowd at the
mesoscale (see Sect. 8.1 for a deeper discussion about this issue).

6.4 Uniqueness and Continuous Dependence of the Solution

We now consider the initial-value problem for (6.9):

8
<

:

@�t

@t
Cr � .�tvŒ�t �/ D 0; t 2 .0; T �; x 2 R

d

�0 D N�; x 2 R
d ;

(6.12)

where N� is a prescribed initial probability measure in R
d and T > 0 a certain final

time, and prove uniqueness of the solution and its continuous dependence on the
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initial datum. Clearly, this will straightforwardly imply analogous properties for
the solution �t to (6.6). However, working with probabilities is more convenient
because one can exploit a well consolidated theoretical background, whose essential
elements are recalled in Appendix A.

To begin with, we report the precise sense in which it will be useful to understand
the concept of solution to (6.12).

Definition 6.1. We say that �	 2 C.Œ0; T �I P1R
d / is a (weak) solution to

Problem (6.12) if it satisfies:

Z

Rd


 d�t D
Z

Rd


 d N� C
Z t

0

Z

Rd

r
 � vŒ�s� d�s ds (6.13)

for all 
 2 C1c .Rd / and all t 2 Œ0; T �.
Notice that, in practice, the weak formulation (6.13) of Problem (6.12) is obtained
by integrating (6.4) in time after rescaling �t to �t .

Using (6.13) we can formally check that

�t D �.t/# N�; t 2 .0; T � (6.14)

is a representation formula of the solution provided � W Œ0; T � 	 R
d ! R

d , called
the flow map, satisfies:

8
<

:

@�.t; x/

@t
D vŒ�t �.�.t; x//; t 2 .0; T �; x 2 R

d

�.0; x/ D x; x 2 R
d :

(6.15)

In fact, using (6.14) and (6.15) in (6.13) we discover

Z

Rd


.�.t// d N� D
Z

Rd


 d N� C
Z t

0

Z

Rd

r
.�.s// � @�.s/
@s

d N� ds

D
Z

Rd


 d N� C
Z t

0

Z

Rd

@

@s

.�.s// d N� ds

D
Z

Rd


 d N� C
Z

Rd

Œ
.�.t// � 
.�.0//� d N�;

which is clearly seen to be an identity upon considering that � is the identity map at
t D 0.

Next, we state a basic assumption on the velocity field concerning its dependence
on the space variable and the measure. We actually do not enter the details of
the explicit expression of v because this is not necessary for the development
of a general qualitative theory. However, in Sect. 6.8 we will come back to
the structure (6.10) and discuss the consequences of the general theory on the
construction of particular models.
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Assumption 6.1 (Lipschitz continuity of v). There exists a constant Lip.v/ > 0

such that

jvŒ�2�.x2/ � vŒ�1�.x1/j � Lip.v/ .jx2 � x1j CW1 .�1; �2//

for all x1; x2 2 R
d and all �1; �2 2P1R

d .

Here W1 .�; �/ is the Wasserstein metric in the space P1R
d of probability measures

in R
d with finite first moment, see Appendix A for details.

An immediate consequence of Assumption 6.1 is:

Lemma 6.1. (i) For a given �	 2 C.Œ0; T �I P1R
d / the flow map defined

by (6.15) satisfies:

j�.t; x2/� �.t; x1/j � C jx2 � x1j

for a suitable constant C > 0 independent of �	, x1, x2.
(ii) Let �1;	; �2;	 2 C.Œ0; T �I P1R

d / be given and let ��1 , ��2 be the corre-
sponding flow maps generated by (6.15). Then there exists a constant C > 0,
independent of both �1;	 and �2;	, such that

j��2.t; x/ � ��1.t; x/j � C

Z t

0

W1 .�1;s; �2;s/ ds

for all x 2 R
d .

Proof. From (6.15) it follows �.t; x/ D x C R t
0

vŒ�s�.�.s; x// ds, hence:

(i) j�.t; x2/ � �.t; x1/j � jx2 � x1j C
Z t

0

jvŒ�s�.�.s; x2//� vŒ�s�.�.s; x1//j ds

� jx2 � x1j C Lip.v/
Z t

0

j�.s; x2/ � �.s; x1/j ds;

whence invoking Gronwall’s inequality yields:

j�.t; x2/� �.t; x1/j � .1C Lip.v/t exp Lip.v/t/ jx2 � x1j

and the thesis follows by bounding t from above at the right-hand side by T .

(ii) ��2.t; x/ � ��1.t; x/ D
Z t

0

fvŒ�2;s �.��2 .s; x// � vŒ�1;s �.�
�2.s; x//g ds

C
Z t

0

fvŒ�1;s�.��2.s; x// � vŒ�1;s �.�
�1.s; x//g ds
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thus

j��2.t; x/ � ��1.t; x/j � Lip.v/

�Z t

0

W1 .�1;s; �2;s/ ds

C
Z t

0

j��2.s; x/ � ��1.s; x/j ds

�

and Gronwall’s inequality says

j��2.t; x/ � ��1.t; x/j � Lip.v/ exp Lip.v/t
Z t

0

W1 .�1;s; �2;s/ ds:

Owing to the lemma above, we are in a position to prove the main result of this
section:

Theorem 6.1. Let �1;	; �2;	 2 C.Œ0; T �I P1R
d / be two solutions to Prob-

lem (6.12) corresponding to initial data N�1; N�2 2 P1R
d . Under Assumption 6.1

there exists a constant C > 0, independent of N�1; N�2, such that

W1 .�1;t ; �2;t / � CW1 . N�1; N�2/; 8 t 2 Œ0; T �: (6.16)

Estimate (6.16) gives the continuous dependence of the solutions to Problem (6.12)
on the initial data. For N�1 D N�2 it also gives uniqueness.

Proof. Let ' 2 Lip1.R
d /, then

Z

Rd

' d.�2;t � �1;t /D
Z

Rd

'.��2.t// d N�2�
Z

Rd

'.��1.t// d N�1

D
Z

Rd

.'.��2.t//� '.��1.t/// d N�2C
Z

Rd

'.��1.t// d. N�2� N�1/:

Since both ' and ��1.t/ are Lipschitz continuous in x so is ' ı ��1.t/, therefore we
can bound from above the second term at the right-hand side by W1 . N�1; N�2/. As far
as the first term is concerned, we first use the Lipschitz continuity of ' and then
Lemma 6.1 along with N�2.Rd / D 1 to get:

� C

�Z t

0

W1 .�1;s ; �2;s/ ds CW1 . N�1; N�2/
�
:

Finally, taking the supremum of both sides over ' we obtain

W1 .�1;t ; �2;t / � C

�Z t

0

W1 .�1;s ; �2;s/ ds CW1 . N�1; N�2/
�
;

whence the thesis follows once again by Gronwall’s inequality.
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6.5 Existence of the Solution

Far more laborious is the proof of existence of solutions to Problem (6.12), of which
we will outline here the main ideas without reporting all detailed calculations. The
interested reader is referred to the bibliographical notes at the end of this chapter for
a list of references addressing thoroughly the missing technical aspects.

In order to proceed further, we need to formulate additional assumptions on the
velocity field:

Assumption 6.2 (Boundedness and mild linearity of v).

(i) There exists a constant Vmax > 0 such that

jvŒ��.x/j � Vmax

for all x 2 R
d and all � 2P1R

d .
(ii) For any a 2 Œ0; 1� and any pair of measures �1; �2 2P1R

d it results

vŒa�1 C .1 � a/�2� D avŒ�1�C .1 � a/vŒ�2�:

We call Assumption 6.2(ii) mild linearity because it imposes the linearity of the
mapping � 7! vŒ�� for convex linear combinations only. As a matter of fact, it is not
strictly needed for proving the existence of solutions, nevertheless it has the merit
of allowing for a proof which does not require a sophisticated technical background
in optimal transport. Additionally, as we will see in Sect. 6.8, it is not a nuisance
as far as the application of the theory to reasonable models of crowd dynamics is
concerned.

Theorem 6.2. Under Assumptions 6.1 and 6.2, together with the further require-
ment N� 2 R

d , there exists a solution to Problem (6.12) in the sense of Definition 6.1.

Proof. � The main idea is to start from a family of discrete-in-time versions,
hereafter labeled by an index k 2 N, of the representation formula (6.14). These
are constructed by introducing in the interval Œ0; T � a lattice ftkn gNknD0 of uniformly
spaced points, such that tk0 D 0, tkNk D T , tknC1 � tkn D 	tk , and then computing in
P1R

d :

(
�knC1 D �kn #�kn
�k0 D N�;

�kn .x/ D x C vŒ�kn �.x/	tk; (6.17)

�Skip on first reading.
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where �kn is shorthand for �k
tkn

. The index k identifies the level of refinement of the

lattice. In particular, for k ! 1 we assume that 	tk ! 0, however in such a way
that Nk	tk D T for all k.

By means of a piecewise linear interpolation in time, we construct the following
measure-valued curve t 7! �kt in the space C.Œ0; T �I P1R

d /:

�kt D
Nk�1X

nD0


�
1 � t � t

k
n

	tk

�
�kn C

t � tkn
	tk

�knC1
�
�Œtkn ; t

k
nC1�

.t/; (6.18)

which then we want to use for:

(i) Showing that the sequence f�k	gk�0 converges to some �	 2 C.Œ0; T �I P1R
d /

when 	tk ! 0 (i.e., k !1).
(ii) Showing that �	 is a weak solution to Problem 6.12 in the sense of Defini-

tion 6.1.

Step (i)

The crucial estimates are:

• That first and second order moments of the �kn ’s are uniformly bounded with
respect to both n and k:

sup
k�0

sup
1
n
Nk

Z

Rd

jxjp d�kn.x/ < C1; p D 1; 2; (6.19)

which can be proved by induction from (6.17) using also the hypothesis N� 2 R
d .

• That the curves t 7! �kt are Lipschitz continuous uniformly in k:

W1

�
�ks ; �

k
t

� � Vmax jt � sj ; 8 s; t 2 Œ0; T �; (6.20)

which can be proved by first showing from (6.17) that W1

�
�kn �

k
nC1

� � Vmax	tk
for all n (notice that here the uniform boundedness of v comes into play) and then
using the interpolation (6.18).

• That first and second order moments of �kt are uniformly bounded with respect
to both t and k:

sup
k�0

sup
t2Œ0; T �

Z

Rd

jxjp d�kt .x/ < C1; p D 1; 2; (6.21)

which follows immediately by interpolation from (6.19).



148 6 Basic Theory of Measure-Based Models

Owing to them we can show that the sequence f�k	gk�0 is relatively compact in
C.Œ0; T �I P1R

d /, hence that it converges (upon passing to subsequences, but we
continue to label the convergent subsequence by k for brevity): �k	 ! �	 for k !
1, namely

lim
k!1 sup

t2Œ0; T �
W1

�
�kt ; �t

� D 0: (6.22)

Particularly, we rely on Ascoli-Arzelà’s compactness criterion, which says that such
a relative compactness can be proved through the equicontinuity of f�k	gk�0 and the
relative compactness of f�kt gk�0 in P1R

d for any fixed t 2 Œ0; T �.
• Equicontinuity follows straightforwardly from (6.20), thanks to the fact that the

constant Vmax does not depend on k.
• Relative compactness of f�kt gk�0 in P1R

d is equivalent to its tightness and
uniform integrability of first order moments.

– A sufficient condition for tightness is the existence of a function f W Rd !
Œ0; C1�, with compact sub-levels, such that

sup
k�0

Z

Rd

f d�kt < C1:

Estimate (6.21) shows that we can take f .x/ D jxj.
– A sufficient condition for the uniform integrability of first order moments is

that there exists p > 1 such that

sup
k�0

Z

Rd

jxjp d�kt .x/ < C1:

Again, estimate (6.21) shows that this actually holds for p D 2.

Step (ii)

We now proceed by inserting (6.18) into (6.13) to find, after some algebraic
manipulations:

d

dt

Z

Rd


 d�kt �
Z

Rd

r
 � vŒ�kt � d�kt D
Nk�1X

nD0

�
	tk

2

Z

Rd

D2
. Nx/vŒ�kn � � vŒ�kn � d�kn

� t � t
k
n

	tk

Z

Rd

r
 � vŒ�kn � d.�knC1 � �kn /
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�
�
t � tkn
	tk

�2 Z

Rd

r
 � .vŒ�knC1� � vŒ�kn �/ d�
k
nC1

C
�
t � tkn
	tk

�2 Z

Rd

r
 � .vŒ�knC1� � vŒ�kn �/ d�
k
n

)

	 �Œtkn ; tknC1�
.t/;

where D2
 is the Hessian of 
 and Nx is a point of the segment connecting x and
x C vŒ�kn �	tk (they come from the Taylor expansion of 
.�kn .x//, after using the
push forward (6.17) for converting integrals with respect to �knC1 into integrals with
respect to �kn ). This step is where one uses specifically Assumption 6.2(ii) with

a D t�tkn
	tk

.
By invoking the estimates obtained in step 6.5 we further get:

ˇ̌
ˇ
ˇ

Z t

0

�
d

ds

Z

Rd


 d�ks �
Z

Rd

r
 � vŒ�ks � d�ks
�

ds

ˇ̌
ˇ
ˇ

�
Z t

0

ˇ
ˇ
ˇ
ˇ
d

ds

Z

Rd


 d�ks �
Z

Rd

r
 � vŒ�ks � d�ks
ˇ
ˇ
ˇ
ˇ ds � C	tk;

therefore, by performing the time integration at the left-hand side (with �k0 D �k0 �
N� by construction, cf. (6.17), (6.18)),

lim
k!1

ˇ
ˇ
ˇ
ˇ

Z

Rd


 d�kt �
Z

Rd


 d N� �
Z t

0

Z

Rd

r
 � vŒ�ks � d�ks ds

ˇ
ˇ
ˇ
ˇ D 0:

In order to conclude the proof, it remains to show that

lim
k!1

Z

Rd


 d�kt D
Z

Rd


 d�t ; lim
k!1

Z t

0

Z

Rd

r
�vŒ�ks � d�ks D
Z t

0

Z

Rd

r
�vŒ�s � d�s

for all t 2 .0; T �. This is done easily via (6.22). In particular, in the second case
one can use that the limit commutes with the time integral owing to dominated
convergence (in fact

ˇ
ˇR

Rd
r
 � vŒ�ks � d�ks

ˇ
ˇ � Vmaxkr
k1).

The requirement that N� 2 R
d has been technically necessary in step 6.5 for

obtaining the uniform integrability of first order moments of the �kt ’s. As such, it
cannot be strictly motivated by appealing to modeling reasons. Nevertheless, it is
worth pointing out that it is naturally satisfied in most real world applications, where
one reasonably deals with initial conditions with compact support (indeed, a crowd
spread in the whole space R

d would not make much sense). If this is the case, then
supp. N�/ is contained in a ball BR.0/ centered at the origin and with large enough
radiusR > 0, so that:
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Z

Rd

jxjp d N�.x/ D
Z

supp.N�/
jxjp d N�.x/ � Rp:

Hence, N� has actually finite moments of any order p � 0.

6.6 Approximation of the Solution

We now reconsider the numerical scheme (5.37) presented in Chap. 5 and show
that it indeed approximates the solution to Problem (6.12). Actually, for technical
purposes we will need here a notation slightly different from that introduced in the
previous chapter. Therefore, in order to fix the ideas we begin by briefly reviewing
the procedure which leads to the scheme.

First, one obtains from Problem (6.12) the discrete-in-time version (6.17), which
actually corresponds to a time-explicit Euler approximation of (6.12). Secondly, one
approximates �kn by a piecewise constant absolutely continuous measure:

Q�kn D Q�knL d ; Q�kn.x/ D
X

i2Zd
�kn;i�Eki

.x/; (6.23)

where fEk
i gi2Zd is a pairwise disjoint partition of Rd , that for simplicity we will

assume formed by hypercubes of size length 	xk > 0, thus L d .Ek
i / D 	xdk all i ,

with 	xk ! 0 for k ! 1. Notice that we are using the index k to label the level
of refinement of both the time and space lattice, whose grid steps are	tk and 	xk ,
respectively.

Next, one approximates also the velocity vŒ�kn � by a spatially piecewise constant
vector field:

Qvkn.x/ D
X

i2Zd
vŒ Q�kn �.xki /�Eki .x/;

xkj being any point of the cell Ek
j , for instance its center. In practice, in each space

cell the velocity is computed by means of the true analytical expression of v but
using the approximate measure (6.23) in place of �kn . Consequently, also the flow
map �kn is approximated as

Q�kn .x/ D x C Qvkn.x/	tk;

which in each cell acts as a rigid translation directed along the vector vŒ Q�kn �.xkj /	tk .

Finally, one imposes that two successive measures Q�kn , Q�knC1 are linked by a push
forward over the grid cells guided by the mapping Q�kn :

Q�knC1.Ek
i / D . Q�kn # Q�kn/.Ek

i / D Q�kn.. Q�kn /�1.Ek
i //; 8 i 2 Z

d ; (6.24)
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which, after substituting the previous expressions of Q�kn , Q�knC1, Q�kn , gives rise to:

�knC1;i D
1

	xdk

X

j2Zd
�kn;jL

d .. Q�kn /�1.Ek
i /\ Ek

j /; i 2 Z
d : (6.25)

Remark 6.2. Equivalence between (5.37) and (6.25) is readily established by
observing that

L d .. Q�kn /�1.Ek
i /\ Ek

j / D L d .Ek
i \ Q�kn .Ek

j //;

in fact:

L d .. Q�kn /�1.Ek
i / \ Ek

j / D
Z

Ekj

�Eki
. Q�kn .x// dx D

Z

Ekj

�Eki
.x C vŒ Q�kn �.xkj /	tk/ dx

D
Z

EkjCvŒQ�kn �.xkj /	tk
�Eki

.y/ dy D
Z

Q�kn .Ekj /
�Eki

.y/ dy

D L d .Ek
i \ Q�kn .Ek

j //:

Formula (5.37) is more convenient for computational purposes because it dispenses
one from the computation of the inverse images of grid cells. In contrast, for-
mula (6.25) is more convenient for analytical purposes, therefore we will invariably
refer to it throughout this section.

Remark 6.3. Before going any further it is worth pausing a bit over two points.
First, in Chap. 5 we used the letter � to denote the mass density, i.e., the density

of the mass measure �. Conversely, in this section we are using � to denote a
probability density, namely the density of the probability measure �. Such a slight
abuse of notation is justified by the fact that, owing to the discussion set forth in
Sect. 6.3, the two densities are actually the same up to the scaling factor N . Hence
the numerical scheme (6.25) is in turn the same in either case.

Secondly, in Chap. 5 we presented the numerical scheme (5.37) for approxi-
mating only the continuous part of the mass measure �, whereas here we have
reintroduced it for approximating the whole probability measure �. We anticipate
that we will indeed be able to prove the convergence of the numerical solution (6.23)
to the weak solution of Problem (6.12) regardless of the spatial structure of the
latter. Nevertheless, this theoretical result is true in the limit 	tk; 	xk ! 0. In
practice, when one is forced to keep finite time and space steps, the approximation
provided by (6.23)–(6.25) is much more reliable if the approximated measure is in
turn absolutely continuous.

Some interesting elementary properties of the scheme (6.25) are:

• Preservation of the non-negativity of the solution,

�kn;i � 0; 8 i 2 Z
d ) �knC1;i � 0; 8 i 2 Z

d
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and, by induction,

�k0;i � 0; 8 i 2 Z
d ) �kn;i � 0; 8 i 2 Z

d ; 8 n:
• Conservativeness,

Q�knC1.Rd / D
Z

Rd

Q�knC1.x/ dx D
X

i2Zd
�knC1;iL d .Ek

i /

D
X

i2Zd

X

j2Zd
�kn;jL

d .. Q�kn /�1.Ek
i /\ Ek

j /

D
X

j2Zd
�kn;jL

d .. Q�kn /�1.Rd /\ Ek
j / D

D
X

j2Zd
�kn;jL

d .Ek
j / D

Z

Rd

Q�kn.x/ dx D Q�kn.Rd /

and, by induction,

Q�kn.Rd / D Q�k0 .Rd /; 8 n:

They indicate that the numerical scheme is consistent with the main expected
features of the exact solution �	. However, in order to achieve the proof of
convergence some additional assumptions are needed.

Assumption 6.3 (Discretization of the initial condition, mesh parameters).

(i) The initial coefficients f�k0;i gi2Zd are obtained as

�k0;i D
N�.Ek

i /

	xdk
; 8 i 2 Z

d ;

where N� is the exact initial datum of Problem (6.12).
(ii) The time and space steps 	tk , 	xk are such that

	xk D o.	tk/ when k !1:

Equivalently, there exists a sequence fˇkgk�0 � RC, with ˇk ! 0 for k !1,
such that 	xk D ˇk	tk .

In the same spirit as Sect. 6.5, we introduce now a piecewise linear time
interpolation of the Q�kn ’s in order to deal with time-continuous curves t 7! Q�kt :

Q�kt D
Nk�1X

nD0


�
1 � t � t

k
n

	tk

�
Q�kn C

t � tkn
	tk

Q�knC1
�
�Œtkn ; t

k
nC1

�.t/: (6.26)
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Again we assume that the time lattice is made of Nk intervals of equal size 	tk ,
such that Nk	tk D T independently of k.

Equipped with all of this stuff, we can finally prove:

Theorem 6.3. Under Assumptions 6.1, 6.2, and 6.3, with moreover N� 2 P1R
d , if

f Q�k	gk�0 converges to some �	 in C.Œ0; T �I P1R
d / when k !1 then �	 is a weak

solution to Problem (6.12) in the sense of Definition 6.1.

This result reminds of the Lax-Wendroff’s Theorem about the convergence of
conservative numerical schemes for hyperbolic conservation laws. In fact, the
convergence of the approximating sequence f Q�k	gk�0 on finer and finer grids is taken
as an assumption, and what is actually proved is that then its limit is a weak solution
to Problem (6.12). Nevertheless, the theorem does not guarantee that the numerical
solution constructed out of the scheme (6.25) does indeed converge to something.
For this, see Proposition 6.1 at the end of the next proof.

Proof. � We organize the proof in two steps:

(i) First we establish some regularity estimates for the measures Q�kn and conse-
quently for the curves t 7! Q�k	.

(ii) Next we insert Q�kt into (6.13) and, using the previous estimates, pass to the limit
k !1.

Step (i)

Relation (6.24) implies that the Q�kn ’s satisfy

Z

Rd

s d Q�knC1 D
Z

Rd

s. Q�kn / d Q�kn (6.27)

for all simple functions s adapted to the spatial grid, i.e., piecewise constant
functions of the form s D P

i2Zd ˛i�Eki , ˛i 2 R. In general (6.27) does not hold

for any s (as it would if Q�knC1 were the exact push forward of Q�kn via Q�kn ), however it
yields further the estimate

ˇ
ˇ̌
ˇ

Z

Rd

' d Q�knC1 �
Z

Rd

'. Q�kn / d Q�kn
ˇ
ˇ̌
ˇ � 2Lip.'/

p
d	xk (6.28)

for all Lipschitz continuous ' W Rd ! R. With (6.28) one is in a position to check
that the Q�kn ’s have uniformly bounded first order moments with respect to both n
and k:

�Skip on first reading.
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sup
k�0

sup
1
n
Nk

Z

Rd

jxj d Q�kn.x/ < C1

and, from this by interpolation, that the same is true also for the curves t 7! Q�kt :

sup
k�0

sup
t2Œ0; T �

Z

Rd

jxj d Q�kt .x/ < C1:

This says, in particular, that Q�kt 2P1R
d for all t 2 Œ0; T � and all k � 0 (the fact that

Q�kt is a probability measure is obvious by interpolation from the conservativeness
of the numerical scheme (6.25)).

Furthermore, from (6.28) choosing ' 2 Lip1.R
d / it follows

W1

� Q�kn ; Q�knC1
� �

 

Vmax C 2
p
d sup
k�0

ˇk

!

	tk;

the ˇk’s being the numbers appearing in Assumption 6.3(ii), whence also

W1

� Q�ks ; Q�kt
�
�
 

Vmax C 2
p
d sup
k�0

ˇk

!

.t � s/; (6.29)

thus in particular �k	 2 C.Œ0; T �I P1R
d / all k.

Step (ii)

Similarly to the proof of Theorem 6.2 we plug now (6.26) into (6.13) to discover,
after some technical calculations (which again exploit Assumption 6.26.2):

d

dt

Z

Rd


 d Q�kt �
Z

Rd

r
 � vŒ Q�kt � d Q�kt D
1

	tk

Nk�1X

nD0

�Z

Rd


 d Q�knC1 �
Z

Rd


.gkn/ d Q�kn
	

	 �Œtkn ; tknC1�
.t/

C
NkX

nD0

�
	tk

2

Z

Rd

.D2
. Nx/vŒ Q�kn �/ � vŒ Q�kn � d Q�kn

� t � t
k
n

	tk

Z

Rd

r
 � vŒ Q�kn � d. Q�knC1 � Q�kn /

C
�
t � tkn
	tk

�2 Z

Rd

r
 � .vŒ Q�knC1�� vŒ Q�kn �/ d Q�kn
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�
�
t � tkn
	tk

�2 Z

Rd

r
 � .vŒ Q�knC1�� vŒ Q�kn �/ d Q�knC1

)

	 �Œtkn ; tknC1�
.t/:

The last four terms at the right-hand side are analogous to those appearing in the
proof of Theorem 6.2. Owing to Assumption 6.1 and to the estimates obtained in
the previous step (i), they can be collectively bounded from above by C	tk .

Conversely, the first term at the right-hand side involves the function

gkn.x/ WD x C vŒ Q�kn �.x/	tk;

i.e., the discrete-time flow map computed with respect to the space-approximate
measure Q�kn rather than to �kn , cf. (6.17). Notice that, compared to the approximate
flow map Q�kn , the mapping gkn is in general not a piecewise translation over the
grid cells. This term must be carefully estimated, also in view of the presence of
the time step 	tk at the denominator. Adding and subtracting

R
Rd
'. Q�kn / d Q�kn and

invoking (6.28) to handle it, one ultimately sees that there exists C > 0 such that
ˇ̌
ˇ̌
Z

Rd

' d Q�knC1 �
Z

Rd

'.gkn/ d Q�kn
ˇ̌
ˇ̌ � C Lip.'/

p
d	xk

for all Lipschitz continuous functions ' W Rd ! R. Hence, taking in particular

 2 C1

c .Rd / gives

1

	tk

ˇ̌
ˇ
ˇ

Z

Rd


 d Q�knC1 �
Z

Rd


.gkn/ d Q�kn
ˇ̌
ˇ
ˇ � C Lip.'/

p
dˇk

and finally
ˇ̌
ˇ
ˇ
d

dt

Z

Rd


 d Q�kt �
Z

Rd

r
 � vŒ Q�kt � d Q�kt
ˇ̌
ˇ
ˇ � C .ˇk C	tk/:

Integrating in time from 0 to t � T we obtain

ˇ
ˇ̌
ˇ

Z t

0

�
d

ds

Z

Rd


 d Q�ks �
Z

Rd

r
 � vŒ Q�ks � d Q�ks
�

ds

ˇ
ˇ̌
ˇ

�
Z t

0

ˇ̌
ˇ
ˇ
d

ds

Z

Rd


 d Q�ks �
Z

Rd

r
 � vŒ Q�ks � d Q�ks
ˇ̌
ˇ
ˇ ds � CT .ˇk C	tk/

whence, by performing the integration at the left-hand side,

lim
k!1

ˇ̌
ˇ
ˇ

Z

Rd


 d Q�kt �
Z

Rd


 d Q�k0 �
Z t

0

Z

Rd

r
 � vŒ Q�ks � d Q�ks ds

ˇ̌
ˇ
ˇ D 0; (6.30)

where we have used that Q�k0 D Q�k0 by interpolation, cf. (6.26).
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Now, since by assumption fQ�k�gk�0 converges in C.Œ0; T �I P1R
d / to some ��, we

have supt2Œ0; T � W1

� Q�kt ; �t
�
! 0 for k ! 1. As seen in the proof of Theorem 6.2,

this implies (up to subsequences)

Z

Rd


 d Q�kt !
Z

Rd


 d�t ;

Z t

0

Z

Rd

r
 � vŒ Q�ks � d Q�ks ds!
Z t

0

Z

Rd

r
 � vŒ�s� d�s ds

when k !1. Therefore, from (6.30) it follows that such a �� is a weak solution to
Problem (6.12) provided we also have

Z

Rd


 d Q�k0 !
Z

Rd


 d N� .k !1/: (6.31)

But this holds due to the approximation of the initial datum prescribed by
Assumption 6.3(i). In fact, for any ' 2 Lip1.R

d / it results

Z

Rd

' d Q�k0 D
X

i2Zd

Z

Eki

'.x/
N�.Ek

i /

	xdk
dx D

X

i2Zd

 
1

	xdk

Z

Eki

'.x/ dx

!

N�.Ek
i / D

Z

Rd

s d N�;

where s DPi2Zd
˛i�Eki

with ˛i D 1

	xdk

R
Eki
'.x/ dx. Thus

Z

Rd

' d. N� � Q�k0 / D
Z

Rd

.' � s/ d N� D
X

i2Zd

Z

Eki

.'.x/ � ˛i / d N�.x/

whence, considering that j'.x/ � ˛i j � 1

	xdk

R
Eki
j'.x/ � '.y/j dy, we obtain

� 1

	xdk

X

i2Zd

Z

Eki

Z

Eki

jx � yj dy d N�.x/

�
p
d	xk;

which implies W1

� Q�k0 ; N�
� ! 0 when k ! 1, and this is enough for

concluding (6.31).

As previously anticipated, the missing point of Theorem 6.3 is a criterion
ensuring the convergence in C.Œ0; T �I P1R

d / of the (interpolated) sequence of
approximate solutions f Q�k	gk�0. The gap is filled by the following proposition.

Proposition 6.1. Let a bounded set K � R
d exist such that supp. Q�kn/ 
 K for all

0 � n � Nk and all k � 0. Then f Q�k	gk�0 converges in C.Œ0; T �I P1R
d /.

Proof. Due to the assumption on the supports of the Q�kn ’s, it results supp. Q�kt / 
 K
for all t 2 Œ0; T � and all k � 0 as well. In addition, since K is bounded, there exists
R > 0 so large that the ball BR.0/ containsK , whence:



6.7 Spatial Structure of the Solution 157

Z

Rd

jxjp d Q�kt .x/ D
Z

K

jxjp d Q�kt .x/ � Rp < C1; 8p � 0:

Therefore the measures Q�kt have uniformly bounded moments of any order. Recall-
ing the proof of Theorem 6.2, this implies that f Q�kt gk�0 is relatively compact in
P1R

d for any fixed t 2 Œ0; T �. Moreover, estimate (6.29) implies that f Q�k	gk�0
is equicontinuous. Ascoli-Arzelà compactness criterion allows us to conclude that
f Q�k	gk�0 is relatively compact in C.Œ0; T �I P1R

d /, and ultimately that it converges
(up to subsequences).

The set K mentioned in Proposition 6.1 is easily imagined to exist especially
when the initial condition N� has compact support, taking into account that (6.9)
describes a transport with finite speed (cf. the simulations presented in Chap. 2).

6.7 Spatial Structure of the Solution

None of the theorems presented in the previous sections provides any information
about the structure in space of the measure �t solving Problem (6.12). However, this
is an important issue especially in view of the derivation of multiscale models, when
one is interested in that a multiscale structure of the initial condition be preserved at
all successive times.

Assume therefore that initially the probability measure associated with the crowd
distribution is of the form

�0 D �m0 C .1� �/M0; � 2 Œ0; 1�;

where, with a slight abuse of notation with respect to (5.22), we have denoted by

m0 D 1

N

NX

kD1
ıxk0
; M0 D �0L d

the discrete and continuous parts of �0. (The symbolsm0, M0 are the same as those
used in Chap. 5 for the discrete and continuous parts of the mass measure, but since
passing from the mass to the probability is only a matter of scaling we prefer
to avoid an over-proliferation of new symbols.) According to the representation
formula (6.14), and using the linearity of the push forward, the probability measure
at successive times t > 0 is

�t D �.�.t/#m0/C .1 � �/.�.t/#M0/;

thus we can study separately the transport of the discrete and the continuous part.
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The discrete part is the easy one, in fact for every measurable E 2 B.Rd / we
see immediately that:

mt.E/ D .�.t/#m0/.E/ D m0.�.t/
�1.E//

D 1

N

NX

kD1
ıxk0
.�.t/�1.E//

D 1

N

NX

kD1
ı�.t; xk0 /

.E/;

hence, up to defining xk.t/ WD �.t; xk0 /, we obtain mt D 1
N

PN
kD1 ıxk.t/. In other

words, the discrete part remains discrete at all times, its atoms being transported by
the flow map � .

The continuous part requires instead more care, for we have to ensure that
the density does not concentrate over volumeless space structures (points, curves,
surfaces, depending on the space dimension d ) carrying a nonzero mass. As the next
results demonstrate, this does not happen for all possible flow maps.

Theorem 6.4. For every t 2 .0; T � let Ct > 0 exist such that

L d .�.t/�1.E// � CtL
d .E/; 8E 2 B.Rd /: (6.32)

ThenMt D �.t/#M0 is absolutely continuous with respect to L d for all t 2 .0; T �.
Proof. Saying that Mt is absolutely continuous with respect to L d means that the
measureMt of every Lebesgue-negligible measurable set vanishes.

Let E 2 B.Rd / be such that L d .E/ D 0. Then L d .�.t/�1.E// D 0

as well in view of (6.32), and furthermore M0.�.t/
�1.E// D 0 because M0 is

absolutely continuous with respect to L d by construction. But then Mt.E/ D
M0.�.t/

�1.E// D 0 and the thesis is proved due to the arbitrariness of E .

Heuristically speaking, (6.32) says that the flow map does not shrink measurable
sets too much (in the sense of their Lebesgue measure: Length, area, volume,
or whatever). In fact, according to (6.32) the L d -measure of the “original” set
�.t/�1.E/ can be controlled via the L d -measure of the set E obtained after the
transformation operated by �.t/. The main point is how to check, in a reasonably
simple way, the validity of property (6.32) for a given flow map. A sufficient answer,
covering at least the case of smooth flow maps, is provided by the following result.

Proposition 6.2. Let �.t/ W Rd ! R
d be a diffeomorphism with Lipschitz constant

“sufficiently” small, i.e., precisely:

Lip.�.t// <
1

Lip.v/T
: (6.33)

Then �.t/ satisfies (6.32).
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Proof. First notice that for all x1; x2 we have

j�.t; x2/� �.t; x1/j D
ˇ
ˇ
ˇ
ˇx2 � x1 C

Z t

0

fvŒ�s�.�.s; x2//� vŒ�s�.�.s; x1//g ds

ˇ
ˇ
ˇ
ˇ

� jx2 � x1j �
Z t

0

jvŒ�s�.�.s; x2// � vŒ�s �.�.s; x1//j ds

� jx2 � x1j � Lip.v/
Z t

0

j�.s; x2/ � �.s; x1/j ds

� .1 � Lip.�.t//Lip.v/T / jx2 � x1j ;

where 1 � Lip.�.t//Lip.v/T > 0 in view of (6.33).
Set now C WD 1 � Lip.�.t//Lip.v/T for brevity. For all x1 ¤ x2 it results

j�.t; x2/� �.t; x1/j
jx2 � x1j � C :

Let J�.t/.x1/ be the Jacobian matrix of �.t/ in the point x1 and let � be one of its
eigenvalues with associated eigenvector, say, u (i.e., J�.t/.x1/u D �u). We choose
x2 D x1 C hu, h > 0, and compute:

C � lim
h!0C

j�.t; x1 C hu/� �.t; x1/j
h juj D lim

h!0C

h
ˇ
ˇJ�.t/.x1/u

ˇ
ˇ

h juj D j�j :

Due to the arbitrariness of x1 and �, we conclude that the above inequality holds
for all eigenvalues of J�.t/ in any point of Rd , whence

ˇ
ˇdetJ�.t/

ˇ
ˇ � C d and in turn

j detJ�.t/�1 j � C�d .
Finally, for all E 2 B.Rd / it results:

L d .�.t/�1.E// D
Z

�.t/�1.E/

dx
zWD�.t/.x/D

Z

E

ˇ
ˇdetJ�.t/�1 .z/

ˇ
ˇ d z � 1

C d
L d .E/;

therefore (6.32) is satisfied with Ct D .1 � Lip.�.t//Lip.v/T /�d .

Remark 6.4. By carefully inspecting the proof of Lemma 6.1 we discover that the
Lipschitz constant in space of �.t/ can be estimated uniformly in t 2 Œ0; T � as

Lip.�.t// � 1C Lip.v/TeLip.v/T ;

thus (6.33) can be reduced to a condition on the product a WD Lip.v/T . In
particular, (6.33) is certainly fulfilled if 1Ca exp a < 1

a
, which allows for a 2 .0; Na/

with Na 2 .0:527; 0:528/.



160 6 Basic Theory of Measure-Based Models

6.8 Study of Pedestrian Velocity Models

Assumptions 6.1 and 6.2 provide a set of general properties required to the transport
velocity in order for the theory of well-posedness (cf. Theorems 6.1 and 6.2)
and numerical approximation (cf. Theorem 6.3) to follow. Notice indeed that
Assumption 6.3, which is actually also needed for Theorem 6.3, is not concerned
with the structure of the pedestrian velocity field. The aim of this section is to resume
the specific velocity model elaborated in Chap. 5 for discussing the conditions
under which it complies with the aforesaid assumptions. This can provide useful
guidelines for constructing models which are both realistic and mathematically
robust.

We will henceforth consider the compact form of v given by (6.10), which we
rewrite for a generic measure � 2P1R

d as

vŒ��.x/ D vd.x/CN
Z

Rd

k.y � x/�S .x/.y/ d�.y/; (6.34)

where:

• In accordance with Chap. 5, we assume that interactions depend on the relative
position of the walkers, so that the interaction kernel K can be expressed by
means of a function k W Rd ! R

d as

K.x; y/ D k.y � x/:
It is worth pointing out that, in spite of the apparent more generality provided by a
generic kernelK , this choice is actually the most meaningful for applications. In
fact it ensures the so-called frame indifference (known also as frame invariance
or objectivity), namely the fact that the qualitative and quantitative description of
interactions does not change under rigid transformations of the reference frame
(i.e., changes of observer).

• We account in the integrand, rather than in the integration domain, for the
interaction neighborhood S .x/ by means of a cut-off function �S .x/ W Rd ! RC
such that �S .x/.y/ D 0 for all y 62 S .x/. Ideally, we would like to have
�S .x/ D �S .x/ but, as we will see in a moment, we actually need to slightly
mollify the indicator function in order to meet the required regularity of the
velocity.

Next we formulate the following assumptions:

Assumption 6.4 (Properties of the velocity as in (6.34)).

(i) vd is Lipschitz continuous and bounded in R
d , i.e., there exist constants

Lip.vd/; Vd > 0 such that

jvd.x2/� vd.x1/j � Lip.vd/ jx2 � x1j ; 8 x1; x2 2 R
d ;

jvd.x/j � Vd; 8 x 2 R
d :
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(ii) There exists R > 0 such that, for each x 2 R
d , the interaction neighborhood

S .x/ 
 BR.x/ is measurable and isometric to a reference neighborhood
S .0/ 
 BR.0/.

(iii) k W Rd ! R
d is Lipschitz continuous in BR.0/, i.e., there exists Lip.k/ > 0

such that

jk.z2/ � k.z1/j � Lip.k/ jz2 � z1j ; 8 z1; z2 2 BR.0/:

(iv) �E is Lipschitz continuous and bounded between 0 and 1, i.e.,

j�E.x2/ � �E.x1/j � Lip.�E/ jx2 � x1j ;
0 � �E.x/ � 1;

8 x; x1; x2 2 R
d ; 8E 2 B.Rd /:

Remark 6.5. A comment on Assumption 6.4(ii) is in order. Saying that S .x/ is
isometric to S .0/ means that there is a rigid transformation �x W Rd ! R

d ,
parameterized by x 2 R

d , which maps S .0/ onto S .x/, i.e., �x.S .0// D S .x/.
Specifically, �x has the form

�x.z/ D RxzC x; (6.35)

where Rx 2 R
d�d is a rotation matrix possibly depending on the point x.

Consequently, the following relation holds true:

�S .x/.y/ D �S .0/.z/ for y D �x.z/: (6.36)

Assumption 6.4 is actually all we need in order to apply the previous results of
well-posedness and numerical approximation to our measure-based crowd model.
In the sequel we will confine ourselves to the two-dimensional case (d D 2), which
covers virtually all of the realistic settings relevant for applications. Remarkably, we
will deal with an interaction neighborhood with arbitrary shape.

Upon making the change of variables y D �x.z/ in the integral (6.34), and
recalling (6.35), (6.36), we rewrite the velocity in the form

vŒ��.x/ D vd.x/CN
Z

R2

k.Rxz/�S .0/.z/ d.�
�1
x #�/.z/: (6.37)

Then the rotation matrix appears explicitly in the argument of the interaction kernel
k. A preliminary study of some of its properties is necessary for preparing the next
calculations.

In two space dimensions, a simple representation of Rx can be given:

Rx D
�

cos#x � sin#x
sin#x cos#x

�
;
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x i

j
vd(x)

x

_

_

U0

Ux

O z

y

x

Fig. 6.2 The relation
between the interaction
neighborhood S .x/ (here
supposed to be a circular
sector for pictorial purposes
only) and the reference one
S .0/ through the mapping
�x . Notice in particular the
definition of the rotation
angle #x

#x 2 Œ0; 2
/ being the angle of rotation which determines the local orientation
of the interaction neighborhood. More precisely, bearing in mind the prototypical
definition of S .x/ given by (5.10), it can be identified with the angle formed by
the desired velocity vd.x/ with respect to a fixed reference direction, for instance
the horizontal one associated with the unit vector i. It must not be confused
with the angular width 2 N̨ of the interaction neighborhood introduced in Chap. 5
(see Figs. 5.2 and 6.2), which is instead a parameter carrying a precise modeling
meaning. Assuming for simplicity that vd has constant unit modulus, we can write:

cos#x D vd.x/ � i; sin#x D .vd.x/ 	 i/ � k: (6.38)

In the second formula, vd.x/ and i are thought of as embedded into R
3, with

	 denoting vector product and k the unit vector orthogonal to the plane of
vd.x/ and i. If vd has not constant unit modulus then (6.38) still holds with vd.x/

replaced by vd.x/= jvd.x/j, which is a Lipschitz continuous field (as required by
Assumption 6.4(i)) provided jvdj is uniformly bounded away from zero.

The technical properties of the rotation matrix Rx we will need in the sequel are
expressed by the following couple of lemmas.

Lemma 6.2. The mapping z 7! k.Rxz/�S .0/.z/ is Lipschitz continuous in R
2 for

all fixed x with Lipschitz constant independent of x.

Proof. In order to study the expression

e.z1; z2/ WD
ˇ
ˇk.Rxz2/�S .0/.z2/� k.Rxz1/�S .0/.z1/

ˇ
ˇ ; z1; z2 2 R

2

it is convenient to distinguish three cases.
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(i) If z1; z2 2 S .0/ we have

e.z1; z2/ �
ˇ
ˇk.Rxz2/�S .0/.z2/� k.Rxz2/�S .0/.z1/

ˇ
ˇ

C ˇˇk.Rxz2/�S .0/.z1/� k.Rxz1/�S .0/.z1/
ˇ
ˇ

�
�

max
z2BR.0/

jk.z/jLip.�S .0//C Lip.k/

�
jz2 � z1j ;

where we have used that:

• k is bounded in BR.0/ � S .0/ due to Assumption 6.4(iii).
• Rx sends BR.0/ into itself.
• Rx is an isometry, hence jRx.z2 � z1/j D jz2 � z1j.

(ii) If z1 62 S .0/ and z2 2 S .0/ (or vice versa) then e.z1; z2/ Dˇ̌
k.Rxz2/�S .0/.z2/

ˇ̌
. Let zr WD rz1 C .1 � r/z2, r 2 Œ0; 1�, be a point of

the segment connecting z1 to z2 and pick Nr such that zNr 2 @S .0/. Since by
continuity �S .0/.zNr / D 0, we have, mimicking the calculations of the previous
point:

e.z1; z2/ D
ˇ
ˇk.Rxz2/�S .0/.z2/� k.RxzNr /�S .0/.zNr /

ˇ
ˇ

�
�

max
z2BR.0/

jk.z/jLip.�S .0//C Lip.k/

�
jz2 � zNr j :

On the other hand, jz2 � zNr j D Nr jz2 � z1j � jz2 � z1j.
(iii) Finally, if z1; z2 62 S .0/ then e.z1; z2/ D 0 � jz2 � z1j.
Lemma 6.3. For all x1; x2; z 2 R

2 it results

j.Rx2 �Rx1/zj �
p
2Lip.vd/ jx2 � x1j jzj :

The same holds with Rx1 , Rx2 replaced by R�1x1 , R�1x2 .

Proof. A direct computation shows that

j.Rx2 �Rx1/zj D
q
.cos#x2 � cos#x1/2 C .sin#x2 � sin#x1/2 jzj ;

and the same is true also using inverse matrices. In addition,

jcos#x2 � cos#x1 j D j.vd.x2/ � vd.x1// � ij � jvd.x2/ � vd.x1/j ;
jsin#x2 � sin#x1 j D jf.vd.x2/� vd.x1// 	 ig � kj � jvd.x2/� vd.x1/j ;

hence the thesis follows from the Lipschitz continuity of vd claimed by
Assumption 6.4(i).
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We are finally in a position to prove, as desired, that the velocity (6.34),
or equivalently (6.37), fulfills Assumptions 6.1 and 6.2, and yields therefore a
mathematically robust model of pedestrian motion.

Theorem 6.5. Let Assumption 6.4 hold and assume d D 2. Then the velocity
field (6.34) complies with Assumptions 6.1 and 6.2.

Proof. We check one by one the properties stated by Assumptions 6.1 and 6.2.
Specifically, we start from the latter which is more immediate. We will invariably
refer to the expression (6.37) of the velocity field throughout the proof.

(i) Uniform boundedness follows straightforwardly from the boundedness of vd

and of k in BR.0/:

jvŒ��.x/j � Vd CN max
z2BR.0/

jk.z/j DW Vmax; 8 x 2 R
2; 8 � 2 R

2;

where the constant Vd has been defined in Assumption 6.4.
(ii) Also mild linearity with respect to the probability measure is straightforward.

For all a 2 Œ0; 1� and all �1; �2 2 R
2 it results indeed, owing to the linearity of

the push forward:

vŒa�1 C .1 � a/�2�.x/ D vd.x/

CN
Z

R2

k.Rxz/�S .0/.z/ d.a�
�1
x #�1 C .1� a/��1

x #�2/.z/

D avd.x/C .1 � a/vd.x/

C aN
Z

R2

k.Rxz/�S .0/.z/ d.�
�1
x #�1/.z/

C .1 � a/N
Z

R2

k.Rxz/�S .0/.z/ d.�
�1
x #�2/.z/

D avŒ�1�.x/C .1 � a/vŒ�2�.x/:

(iii) Lipschitz continuity with respect to the probability measure requires to study,
for arbitrary �1; �2 2 R

2 and fixed x 2 R
2, the following expression:

jvŒ�2�.x/ � vŒ�1�.x/j D N
ˇ̌
ˇ
ˇ

Z

R2

k.Rxz/�S .0/.z/ d.�
�1
x #�2 � ��1x #�1/.z/

ˇ̌
ˇ
ˇ

which, in view of Lemma 6.2, can be estimated by means of a suitable constant
C > 0 as

� CW1

�
��1x #�1; ��1x #�2

�

D C sup
'2Lip1.R2/

Z

R2

'.��1x / d.�2 � �1/

D CW1 .�1; �2/:
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To justify the last equality above, notice that ��1x .y/ D R�1x .y�x/ belongs to
Lip1.R

2/, hence when ' varies in Lip1.R
2/ the function ' ı ��1x spans in turn

the whole space Lip1.R
2/.

(iv) Lipschitz continuity with respect to x is instead more delicate, because it
involves directly the rotation matrix Rx . Let x1; x2 2 R

2 and fix � 2 R
2,

then

jvŒ��.x2/� vŒ��.x1/j � jvd.x2/� vd.x1/j

CN
ˇ
ˇ
ˇ
ˇ

Z

R2

k.Rx2z/�S .0/.z/ d.�
�1
x2

#�/.z/

�
Z

R2

k.Rx1z/�S .0/.z/ d.�
�1
x1

#�/.z/

ˇ
ˇ
ˇ
ˇ

� Lip.vd/ jx2 � x1j

CN
Z

R2

jk.Rx2z/� k.Rx1z/j �S .0/.z/ d.�
�1
x2

#�/.z/

CN
ˇ
ˇ
ˇ
ˇ

Z

R2

k.Rx1z/�S .0/.z/ d.�
�1
x2

#� � ��1x1 #�/.z/

ˇ
ˇ
ˇ
ˇ :

(6.39)

In the first integral at the right-hand side of (6.39) we can assume z 2 S .0/,
for otherwise �S .0/.z/ D 0. Hence jzj � R and moreover Rxz 2 BR.0/ for all
x 2 R

2. Lipschitz continuity of k in that ball, along with Lemma 6.3, implies

jk.Rx2z/ � k.Rx1z/j � Lip.k/ j.Rx1 �Rx2/zj
� p2Lip.k/Lip.vd/R jx2 � x1j ;

whence

N

Z

R2

jk.Rx2z/ � k.Rx1z/j �S .0/.z/ d.�
�1
x2

#�/.z/

� N
Z

S .0/

jk.Rx2z/ � k.Rx1z/j d.��1x2 #�/.z/

� Np2Lip.k/Lip.vd/R jx2 � x1j ; (6.40)

having observed that .��1x2 #�/.S .0// D �.S .x2// � 1.
As far as the second integral at the right-hand side of (6.39) is concerned,

we have:
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N

ˇ
ˇ
ˇ̌
Z

R2

k.Rx1z/�S .0/.z/ d.�
�1
x2

#� � ��1x1 #�/.z/

ˇ
ˇ
ˇ̌

� N
Z

S .x1/[S .x2/

ˇ̌
k.Rx1�

�1
x2
.y//�S .0/.�

�1
x2
.y//

�k.Rx1�
�1
x1
.y//�S .0/.�

�1
x1
.y//

ˇ
ˇ d�.y/: (6.41)

Notice that we can confine ourselves to y 2 S .x1/ [ S .x2/ for otherwise
�S .0/.�

�1
xi
.y// D �S .xi /.y/ D 0 for both i D 1; 2. We distinguish two

cases:

(a) jx2 � x1j > 2R.
In this case S .x1/ \ S .x2/ D ; because the balls BR.x1/, BR.x2/ are
disjoint. Thus:

(6.41) D N
Z

S .x1/

ˇ
ˇk.Rx1�

�1
x1
.y//

ˇ
ˇ �S .x1/.y/ d�.y/

CN
Z

S .x2/

ˇ
ˇk.Rx1�

�1
x2
.y//

ˇ
ˇ �S .x2/.y/ d�.y/:

For all y 2 S .xi /, i D 1; 2, it results ��1xi .y/ 2 S .0/ � BR.0/, hence
Rx1�

�1
xi
.y/ 2 BR.0/ and we can use the boundedness of k in that ball to

get

� N max
z2BR.0/

jk.z/j
�Z

S .x1/

�S .x1/.y/ d�.y/C
Z

S .x2/

�S .x2/.y/ d�.y/

�

� N max
z2BR.0/

jk.z/j �.S .x1/[S .x2//

� N max
z2BR.0/

jk.z/j :

But 1 < jx2�x1j
2R

, therefore we conclude

(6.41) � N

2R
max

z2BR.0/
jk.z/j jx2 � x1j : (6.42)

(b) jx2 � x1j � 2R.
In this case the neighborhoods S .x1/, S .x2/ need not be disjoint,
however we can resort to Lemma 6.2 to find C > 0 such that:

(6.41) � CN

Z

S .x1/[S .x2/

ˇ̌
ˇ��1x2 .y/� ��1x1 .y/

ˇ̌
ˇ d�.y/

D CN

Z

S .x1/[S .x2/

ˇ
ˇ
ˇR�1x2 .y � x2/�R�1x1 .y � x1/

ˇ
ˇ
ˇ d�.y/
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D CN

Z

S .x1/[S .x2/

ˇ̌
ˇ.R�1x2 �R�1x1 /.y � x1/CR�1x2 .x2 � x1/

ˇ̌
ˇ d�.y/

and further, thanks to Lemma 6.3 and to the fact that R�1x2 is an isometry,

� C

�Z

S .x1/[S .x2/

jy � x1j d�.y/C �.S .x1/ [S .x2//

�
jx2 � x1j ;

where we have collected in C all further constants.
Let us examine the term with the integral. If y 2 S .x1/ then jy � x1j �

R whereas if y 2 S .x2/ then jy � x1j � jy � x2j C jx2 � x1j � 3R.
Finally, jy � x1j � 3R for all y 2 S .x1/ [ S .x2/, which ultimately
yields

(6.41) � C jx2 � x1j : (6.43)

In conclusion, from (6.42) and (6.43) we deduce that there exists a constant
C > 0 such that (6.41) � C jx2 � x1j for all x1; x2 2 R

2. This, together with
the estimate (6.40), completes the proof of Lipschitz continuity of the mapping
x 7! vŒ��.x/.

Remark 6.6 (Higher dimension). For d > 2 additional technicalities arise, due to a
more complex structure of the rotation matrix. Nevertheless, in the special case that
the desired velocity is constant in x, it is straightforward to extend the results to any
spatial dimension. In fact, the rotation matrix being independent of x, Theorem 6.5
can be proved without using Lemma 6.3, which is the only point where we use
the explicit representation of the matrix. Models with constant desired velocity
have been recently proposed for swarm dynamics problems and for rendez-vous
algorithms.

Remark 6.7 (Zero desired velocity). When the desired velocity is zero the orienta-
tion of the neighborhood of interaction cannot be defined by (6.38). However, this
issue can be solved by replacing vd in (6.38) with any other Lipschitz continuous
unit vector field e.g., a nonzero constant one, with the only purpose of defining a
rotation angle. This problem does not arise if the desired velocity is zero but the
interaction neighborhood S .x/ coincides with the whole ball BR.x/.

6.9 Bibliographical Notes

Sections 6.5 and 6.6 All missing technical details of the proofs of Theorems 6.2
and 6.3 can be found in Tosin and Frasca [160]. Further estimates on the error
produced by the spatial approximation of the discrete-in-time model (6.17) can
be found in Piccoli and Tosin [145].
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Section 6.7 Properties analogous to those stated by Theorem 6.4 and Proposi-
tion 6.2 but for the solution to the discrete-in-time model (6.17), plus additional
estimates on the density in the absolutely continuous case, are reported in
Cristiani et al. [48] and in Piccoli and Tosin [145].

Section 6.8 Models of swarm and rendez-vous dynamics which can be recast
in the framework (6.9)–(6.10) have been proposed in Cristiani et al. [46] and
in Canuto et al. [31, 32], respectively. In these models the agents feature a
constant desired velocity, therefore, according to Remark 6.6, the conclusions of
Theorem 6.5 hold also in spatial dimensions greater than 2 (for instance, d D 3

in the case of swarms).



Chapter 7
Evolution in Measure Spaces with Wasserstein
Distance

Abstract In this chapter, we provide a fairly general mathematical setting for the
nonlinear transport equation analyzed in Chap. 6 (namely Eqs. (5.1) and (6.6)).
More precisely, we study the evolution of solutions in measures spaces endowed
with the Wasserstein distance and its generalizations. Moreover, we illustrate
the connections between the Wasserstein distance, the transport equation and
optimal transportation problems in the sense of Monge-Kantorovich. We also deal
with numerical schemes for the transport equation in measure spaces and prove
convergence of a Lagrangian scheme to the unique solution, when the discretization
parameters approach zero. Convergence of an Eulerian scheme is then achieved
under more strict hypotheses. Both schemes are discretizations of the push-forward
formula defined by the transport equation as in Chap. 6. As a by-product, we obtain
existence and uniqueness of the solution under general assumptions. All the results
of convergence are proved with respect to the Wasserstein distance. We first show
that the total variation distance is not natural for such equations, since we lose
uniqueness of the solution. Then transport equations with sources are considered.
In this case the solution does not conserve its total mass, thus we can not directly use
the classical Wasserstein distance. For this we introduce a generalized Wasserstein
distance, which allows mass creation/destruction and has interest in itself as distance
among measures with different total mass.

7.1 The Homogeneous Nonlinear Evolution Equation

We first focus on a homogeneous nonlinear transport equation of the type:

8
<

:

@�

@t
Cr � .�vŒ��/ D 0

�jtD0
D �0:

(7.1)

E. Cristiani et al., Multiscale Modeling of Pedestrian Dynamics, MS&A 12,
DOI 10.1007/978-3-319-06620-2__7,
© Springer International Publishing Switzerland 2014
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Notice that this is the same as Eqs. (5.1) and (6.6) respectively. Solutions will be
considered in the space Pp.R

d / (1 � p < C1) of probability measures with finite
p-moment, that is such that

R jxjp d� is finite. However, all results extend to the
case when � is not necessarily a probability measure but has finite mass.

Let us indicate by Pc.R
d / the space of probability measures with compact

support. Sometimes we will restrict our presentation to this space.
We always assume the following hypotheses on Eq. (7.1):

Assumption 7.1. The function

vŒ�� W
�

Pp.R
d /! C1.Rd /\ L1.Rd /

� 7! vŒ��

satisfies:

(i) vŒ�� is uniformly Lipschitz and uniformly bounded w.r.t. �, i.e., there exist L,
M such that for all � 2Pp.R

d /, x; y 2 R
d

jvŒ��.x/ � vŒ��.y/j � L jx � yj jvŒ��.x/j �M:
(ii) v is a Lipschitz function, i.e., there exists K such that

kvŒ�� � vŒ��kC0 � KWp .�; �/ :

The main result of this chapter for (7.1) will be the following:

Theorem 7.1. Under Assumption 7.1, it holds

(i) There exists a unique weak solution to (7.1).
(ii) Lagrangian schemes derived by discretization of the push-forward formula

provide sequences of approximate solutions converging to the unique solution.
(iii) Eulerian schemes provide sequences of approximate solutions converging

to the unique solution, under additional assumptions on the discretization
parameters.

Before proving Theorem 7.1 we show how the Wasserstein setting is the correct
one, as opposed to the distance associated to the total variation norm, and illustrate
connections between the Wasserstein distance and the transport equation (7.1).
Then in Sect. 7.2 we will prove existence and uniqueness of solutions by proving
convergence of a semi-discrete Lagrangian scheme. Finally, in Sect. 7.3 we will deal
with the convergence of discrete Lagrangian and Eulerian schemes.

Wasserstein vs. Total Variation Distance (L1 Distance)

The vector space M generated by probability measures is the space of all finite
signed measures �, i.e. such that � D �C��� with �˙ finite. We equip this space
with the total variation norm given by:
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k�kTV D inff�C.Rd /C ��.Rd / W � D �C � ��; �˙ finite positive measureg:

This norm defines a distance among finite measures by setting:

dTV.�; �/ D k� � �kTV :

Notice that if � and � are absolutely continuous w.r.t. Lebesgue measure, then this
coincides with the L1 distance. Indeed, by Radon-Nikodym Theorem we can write
d� D f�d�, d� D f�d�, where � denotes the Lebesgue measure and get:

k� � �k1 WD
Z ˇ̌

f�.x/ � f�.x/
ˇ̌
d�:

For simplicity we will indicate the total variation norm by j � j.
The aim of this section is to show that the Wasserstein distance is more natural

than the total variation or L1 distance in order to study the evolution equation (7.1).
Our aim is to exhibit examples showing how the Wasserstein distance captures more
correctly the natural concept of distance among pedestrian distribution in a given
area and also gives rise to a more complete theoretical framework.

Modeling. Let us start with the modeling aspects. Observe that the Wasserstein
metric is more adapted than L1 distance to measure if two pedestrian populations
are close or far. Indeed, take three different measures as in Fig. 7.1, and call �i the
measure centered in xi , for i D 0; 1; 2. It is easy to prove that

W1

�
�i ; �j

� D ˇ̌xi � xj
ˇ̌

while k�i � �j k1 D 2 for i ¤ j:

Fig. 7.1 Difference between Wasserstein and L1 distances
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In particular, the L1 distance between the measures �0 and �1 is identical to the
distance between �0 and �2. This is not natural with respect to our perception of
distance between pedestrian crowds, that is better modeled by Wasserstein distance.

As shown in Chaps. 4–6, the interaction velocity is often defined by convolution
with a certain kernel. Then two measures that are close with respect to W1 but far
with respect to theL1 distance give velocity fields that are close. For example, define
�� WD 1

2�
�.��; �/ and observe that �� and �2� are close for small � with respect to

W1, but not with respect to the L1 distance.
On the other hand, if the velocity v D vŒ�� is defined by the value of � at a point

(provided a good definition of this quantity), i.e., vŒ��.x/ WD f .�.x// for a certain
f , then the same example provides a completely different result. For f .�.x// D
�.x/, we get vŒ���.0/ D 2vŒ�2��.0/ and thus the velocities are far, even if the
measures are close with respect to W1.

Uniqueness and non-uniqueness of solutions. Replacing the Wasserstein distance
with the total variation distance in Assumption 7.1, one loses uniqueness of
solutions to (7.1). To show this, consider the alternative assumption:

Assumption 7.2. The function

vŒ�� W
�

Pp.R
d /! C1.Rd /\ L1.Rd /

� 7! vŒ��

satisfies:

(i) vŒ�� is uniformly Lipschitz and uniformly bounded w.r.t. �, i.e., there exist L,
M such that for all � 2Pp.R

d /, x; y 2 R
d ,

jvŒ��.x/ � vŒ��.y/j � L jx � yj ; jvŒ��.x/j �M:

(ii) v is a Lipschitz function w.r.t. the total variation distance, i.e., there exists K
such that

kvŒ�� � vŒ��kC0 � K j� � �j:

We now define a function v satisfying Assumption 7.2 and a measure�0 such that
there exist two distinct solutions to (7.1). The main idea is to use non-uniqueness of
solutions to the Cauchy problem Px D px, x.0/ D 0.

We set the dimension of the space d D 2, the final time T D 1 and define a
one-parameter family of measures �t 2 Pc.R

d /, t 2 Œ0; 1�, as shown in Fig. 7.2
(dimensions are not respected). More precisely, �t is defined as follows. First define
a sequence of squares Qi

t , all with sides parallel to axes x and y, with base length
si WD 4�i and such that the upper side is on the line y D 1 C t2. Moreover, the
square Q0

t has the left side on the y-axis and, for i > 0, the left side of the square
Qi
t is contained in the right side of the square Qi�1

t . Then we set
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s0

s1

s2
m0

m1

m2

t2

1+ t2

Fig. 7.2 Assumption 7.2 does not guarantee uniqueness of the solution

�t WD
1X

iD0
mi�Qi

t
�;

where mi D 1
2
8i and � is the Lebesgue measure. It is evident that �t is positive

and absolutely continuous with respect to the Lebesgue measure. Moreover, �t has
bounded support, contained in a rectangle of sides s0 and

P1
iD0 si D 4

3
. We also

have that �t .Rd / DP1iD0 mi s
2
i D 1.

Now define vŒ�t � WD .0; 2t/. We first prove that v satisfies Assumption 7.2 for
the family of measures �t . We then extend v to the whole space Pp.R

d / so as to
still satisfy Assumption 7.2. For each t � 0, vŒ�t � is a constant vector field, thus it
is uniformly Lipschitz with L D 0 and uniformly bounded with M D 2T D 2.
We now prove that v is Lipschitz with respect to the L1 distance on the family
�t . For this, let t; s 2 Œ0; 1� and assume t > s with no loss of generality. Then,
for all x 2 R

d we have jvŒ�t �.x/ � vŒ�s �.x/j D 2.t � s/. Now take n such that
sn < t2 � s2 � sn�1. Remark that such a sn always exists, since sn & 0. Then, for
all i � n the squaresQi

t andQi
s are disjoint. Moreover, the squaresQi

t and Qj
s are

always disjoint for j ¤ i . As a consequence,

j�t � �sj �
1X

iDn
2�t .Q

i
t / D

1X

iDn
2mis

2
i D 2 � 2�n D 2�nC1;

hence

kvŒ�t � � vŒ�s �kC0 D 2.t � s/ � 2
p
t2 � s2 � 2psn�1 D 2 � 21�n � 2 j�t � �sj:
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Now consider the rectangle R WD Œ0; 4
3
� 	 Œ1; 2� and define the following

functional:

F W
�

Pp.R
d /! Œ0; C1/

� 7! F.�/ WD �.R/:

Observe that F is well defined and finite, since F.�/ � �.R2/ D 1. Moreover,
F.�0/ D 0,F.�1/ D 1 andF.�t / is strictly increasing w.r.t. t , thus we can implicitly
define the function f W Œ0; 1� 7! R by setting:

f .F.�t // WD 2t:

We now prove that f is a Lipschitz continuous function. Notice that

jf .�2/� f .�1/j
j�2 � �1j D 2 jt2 � t1j

jF.�t2/� F.�t1/j
;

where ti is the unique value such thatF.�ti / D �i . First assume snC1 � t21 < t22 � sn
for some n. All squaresQi

tk
, with i � nC 1 and k D 1; 2, are completely contained

in R, since 1C t2k � sm � 1. On the other side, the intersection of R with Qi
tk

, with
i � n and k D 1; 2, is given by the rectangle of horizontal side si and vertical side
t2k . Therefore:

jF.�t2 / � F.�t1 /j D
ˇ̌
ˇ̌
ˇ

nX

iD0

�t2 .Q
i
t2
\R/ �

nX

iD0

�t1 .Q
i
t1
\R/

ˇ̌
ˇ̌
ˇ
D

nX

iD0

misi t
2
2 �

nX

iD0

mi si t
2
1

D jt2 � t1j � jt1 C t2j
nX

iD0

mi si � 1

2
jt2 � t1j ;

and thus one gets

jf .�2/ � f .�1/j
j�2 � �1j � 2 jt2 � t1j

2�1 jt2 � t1j D 4;

for �1; �2 satisfying snC1 � t21 < t22 � sn for some n 2 N. Since the Lipschitz
constant 4 does not depend on n, we can easily pass to the general case via the
triangular inequality. One can observe that the Lipschitz continuity is also verified
in 0, since f is continuous and the Lipschitz constant 4 for � > 0 does not depend
on � itself.

We now define vŒ��.x/ WD .0; f .F.�/// (thus, by construction, we have
vŒ�t �.x/ D .0; 2t/) and show that v satisfies Assumption 7.2. The only non-
straightforward point is to prove that v is Lipschitz with respect to the total
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variation distance. For this, take two distinct measures �; �. If F.�/ D F.�/, then
kvŒ�� � vŒ��kC0 D 0 < j� � �j. Otherwise:

j�� �j � j�R� � �R�j � jF.�/ � F.�/j ;

thus

kvŒ�� � vŒ��kC0
j�� �j � jf .F.�// � f .F.�//jjF.�/ � F.�/j :

Hence v is uniformly Lipschitz, since f is Lipschitz.
Now consider the Cauchy problem (7.1) with �0 D �0. Since vŒ�0� D .0; 0/,

setting�t D �0, for all t 2 Œ0; 1�, we get a first solution to the Cauchy problem (7.1).
A second solution is obtained by setting �t D �t . Indeed, consider the non-
autonomous vector field w.t; x/ WD .0; 2t/, generating the flow ˚w

t .x; y/ D
.x; y C t2/. Then ˚w

t #�0 D �t , thus �t satisfies (7.1) with vŒ�t � D .0; 2t/.
It is easy to observe that v does not satisfy Assumption 7.1, for anyp � 1. Indeed,

Wp .�t ; �s/ D t2 � s2, thus it is impossible to find a finite K 0 such that, for all t; s,
it holds

kvŒ�t � � vŒ�s �kC0 D 2.t � s/ � K 0.t2 � s2/ D K 0Wp .�t ; �s/ :

7.2 Transport Equation, Optimal Transportation,
and the Wasserstein Distance

In this section we provide further relationships between the transport equation (7.1)
and the Wasserstein distance. Moreover, we show how the Wasserstein distance
arises naturally in connection with optimal transportation problems.

Given two probability measures �; �, one can ask if there exists a measurable
map � such that �#� D �. Moreover, defining the cost

R
c.x; �.x// d�, with c W

R
d 	 R

d 7! Œ0;1/, one can look for the � with minimal cost. A standard choice
for the function c is c.x; y/ D jx � yjp with p � 1 and one considers the cost:

I Œ�� D
�Z

Rd

j�.x/� xjp d�
�1=p

:

This optimization problem is called the optimal transportation problem and was first
proposed by Monge in 1781.

If � and � are absolutely continuous with respect to the Lebesgue measure, then
an optimal � always exists. However, this does not hold true in the general case,
because a � that sends � to � may not exist. For example if � D ı1, and �D 1

2
ı0 C

1
2
ı2 (on the real line), then there exists no � such that � D �#�. This is due to the



176 7 Evolution in Measure Spaces with Wasserstein Distance

fact that � cannot split the mass placed in 1 for � into two separate masses placed in
0 and 2. Moreover, one can exhibit cases in which there exist minimizing sequences
�n, which admit limits that are not maps.

For such reasons, one generalizes the problem to the following setting. Given a
probability measure 
 on R

d 	 R
d , one can interpret it as a method to transfer a

measure � on R
d to another measure � on R

d as follows: each infinitesimal mass
on a location x is sent to a location y with a probability given by 
.x; y/. Formally,
� is sent to � if the following properties hold:

Z

Rd

d
.x; �/ D d�.x/;
Z

Rd

d
.�; y/ D d�.y/: (7.2)

Such a 
 is called a transference plan from � to �. A condition equivalent to (7.2)
is that, for all f; g 2 C1c .Rd / it holds

R
Rd�Rd .f .x/ C g.y// d
.x; y/ DR

Rd
f .x/ d�.x/C R

Rd
g.y/ d�.y/. Then, one can define a cost for 
 as follows

J Œ
� WD
�Z

Rd�Rd
jx � yjp d
.x; y/

�1=p
;

and look for a minimizer of J . This problem is called the Monge-Kantorovich
problem. This problem induces a definition of distance between two measures,
which is named the Wasserstein distance:

Wp .�; �/ D inf

2� .�;�/ J Œ
�; (7.3)

where � .�; �/ is the set of transference plans from � to �. Notice that we can easily
extend the definition of Wp to measures with the same finite mass.

It is important to observe that this problem is a generalization of the Monge
problem. Indeed, given a � sending � to �, one can define a transference plan
by setting 
 D .Id 	 �/#�, i.e., d
.x; y/ D d�.x/ ˝ ıyD�.x/. It also holds
J ŒId 	 �� D I Œ��. The main advantages of this approach are the following: first,
the existence of at least one 
 satisfying (7.2) is easy to check, since one can choose

.A	B/ D �.A/�.B/, i.e., the mass from � is proportionally split to �. Moreover,
a minimizer of J always exists for �; � 2Pp.R

d /.
For later use we recall the Kantorovich-Rubinstein duality formula:

W1 .�; �/ D sup

�Z

Rd

 d.�� �/ W  is Lipschitz with Lip. / � 1
	
; (7.4)

where Lip. / D supx¤y
j .x/� .y/j
kx�yk denotes the Lipschitz constant of  .

An interesting property is that the distance can be estimated by dividing the
measures in different parts, i.e.,

W p
p .�1 C �2; �1 C �2/ � W p

p .�1; �1/CW p
p .�2; �2/: (7.5)
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This formula makes sense for positive measures �i ; �i such that �i.Rd / D �i .Rd /.
We give two corollaries of this result, that we use in the following. Given�,� sharing
a common mass �, we have

Wp .�; �/ D Wp .� � �; � � �/ : (7.6)

Moreover,Wp distances are “ordered”, in the sense that

p1 � p2 ) Wp1 .�; �/ � Wp2 .�; �/ : (7.7)

This has a direct consequence in our context. Take a function v satisfying Assump-
tion 7.1 for a certain p1 with constants L, M , K . Then v satisfies Assumption 7.1
for all p > p1 and the same constants L, M , K . The converse is not true, since we
only have that, given˝ bounded metric space, it holds

p1 � p2 ) Wp1 .�; �/ � W p2=p1
p2

.�; �/ diam.˝/1�p2=p1 :

Thus, for p < p1 we only have Hölder continuity. In particular, the strongest
condition in Assumption 7.1 is for p D 1.

Given a semigroup of diffeomorphisms �t , one can define a time-dependent push-
forward�t D �t#�. The generated trajectory, in the space of measures, is connected
to the solution of a corresponding transport equation, more precisely:

Theorem 7.2. Let .�t /t2Œ0; T � be a locally Lipschitz in time family of diffeomor-
phisms of Rd , with �0 D Id. Let v D v.t; x/ be the velocity field associated with
the trajectories of �t . Given �0 2 Pc.R

d /, if �t WD �t#�0, then � D �Œ0; T � is the
unique solution of the linear transport equation

8
<

:

@�

@t
Cr � .�v/ D 0

�jtD0
D �0

(7.8)

in C.Œ0; T �; Pc.R
d //, where Pc.R

d / is endowed with the weak topology.

The solution to the previous equation is to be intended in the weak sense, i.e., for
all functions f 2 C1c .Œ0; T � 	R

d /, it holds
R
Œ0; T ��Rd .@tf Crf � v/ d�t dt D 0.

A typical example of an application of Theorem 7.2 is the case in which v is a
given Lipschitz vector field, and �t D ˚ v

t is the flow of v. We recall that ˚ v
t .x0/ is

the value at time t of the unique solution to

(
Px D v.x/

x.0/ D x0:

Then the velocity field associated to �t is exactly v. One can easily pass to time-
dependent vector fields vt , assuming that they generate a flow. This is also true
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when v is measurable with respect to time, uniformly Lipschitz in x and uniformly
bounded. In this context, both approaches (push-forward of measures and transport
equations) are equivalent.

Remark 7.1. Our problem does not fit exactly into the hypotheses of Theorem 7.2,
since we endow Pc.R

d / with the Wp metric, and the corresponding topology,
instead of weak topology. Nevertheless, observe that we always deal with a
compactly supported measure �0, and that the velocity is bounded. Hence, all �t
have compact support, contained in supp.�0/ C BMt.0/. Then we can change the
metric of Rd outside the support of the �t to have R

d bounded. In this context,
Wp metrizes the weak convergence, thus the weak topology coincides with the Wp

topology on Pc.R
d /.

7.2.1 Wasserstein Distance Under the Action of Flows

In this section, we prove estimates of the distance Wp under the action of flows
˚ v
t .�/, where v is a bounded and Lipschitz vector field.

Proposition 7.1. Let v be an autonomous vector field, Lipschitz with constant L
and bounded. Let �; � 2Pc.R

d / be two probability measures. Then

Wp

�
˚ v
t #�; ˚ v

t #�
� � eLtWp .�; �/ (7.9)

and

Wp

�
�; ˚ v

t #�
� � kvkC0 t: (7.10)

Proof. We start with the first estimate (7.9). Let 
 be the transference plan realizing
Wp .�; �/. Observe that ˚t is a diffeomorphism of the space Rd , then ˚ v

t 	˚ v
t is a

diffeomorphism of the space Rd 	Rd . Since 
 is a probability density on R
d 	Rd ,

one can define 
 0 WD .˚ v
t 	 ˚ v

t /#
 , another probability density on R
d 	 R

d . It is
easy to prove that 
 0 is indeed a transference plan between ˚ v

t #� and ˚ v
t #�. Then

we can use this transference plan 
 0 to estimate Wp

�
˚ v
t #�; ˚ v

t #�
�
. This gives

W p
p .˚

t#�; ˚t#�/ � j�jp
Z
jx � yjp d
 0.x; y/ D j�jp

Z
j˚ v

t .x/ � ˚ v
t .y/jp d
.x; y/

� j�jp
Z
eLpt jx � yjp d
.x; y/ D eLptW p

p .�; �/;

where we used the definition of the push-forward in the first equality and the
Gronwall lemma in the second inequality. Therefore (7.9) is proved.
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To prove the second inequality, define the transference plan 
 such that
d
.x; y/ D d�.x/ ˝ ıyD˚t .x/ on R

d 	 R
d . Observe that it is a transference

plan between � and ˚ v
t #�, thus

W p
p .�; ˚

v
t #�/ �

Z
jx � yjp d
.x; y/ D

Z ˇ
ˇx � ˚t.x/

ˇ
ˇp d�.x/

�
Z
.kvkC0t/p d�.x/ D kvkC0ptp:

We now turn our attention to an estimate in which the flows are given by
two distinct vector fields. With a proof similar to that of the first inequality of
Proposition 7.1, we get the following:

Proposition 7.2. Let v, w be two vector fields, both Lipschitz with constant L and
bounded. Let �; � 2Pc.R

d / be two probability measures. Then

Wp

�
˚ v
t #�; ˚w

t #�
� � eLtWp .�; �/C eLt � 1

L
kv � wkC0 : (7.11)

Remark 7.2. These results can be generalized to non-autonomous vector fields
wt ; vt , if they generate smooth flows. This is the case if they are measurable with
respect to time and uniformly bounded and Lipschitz with respect to space. In this
case, in Proposition 7.2 we have to replace kv � wkC0 with supt kvt � wtkC0 .
Remark 7.3. These results can be easily adapted to positive measures that are not
probability measures but have finite mass, i.e., �.Rd / D C ¤ 1. In this case,
we have

Wp

�
˚ v
t #�; ˚w

t #�
� � eLtWp .�; �/C �.Rd /e

Lt � 1
L
kv � wkC0 :

7.2.2 Existence and Uniqueness of Solutions

In this section we introduce a semi-discrete in time Lagrangian scheme to
solve (7.1). The limit of this scheme, when the discretization parameter tends
to zero, is indeed a solution.

We first precisely define the semi-discrete in time Lagrangian scheme, that
defines a Cauchy sequence in C.Œ0; T �; Pp.R

d //, endowed with the distance:

d.�; �/ D sup
t2Œ0; T �

Wp .�t ; �t / : (7.12)
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The idea of the scheme is the following: divide the time interval Œ0; T � in intervals
Œj	t; .j C 1/	t�. For each interval, compute the velocity at the initial time
vj	t D vŒ�j	t � and use it as a constant on the whole interval, i.e., compute
�t D ˚ vj	t

.t�j	t/#�j	t .

Scheme 1 Lagrangian, semi-discrete in time, exact velocity
initialization:

• Fix a time discretization parameter	t ;
• Fix a starting measure �0;
• i  0;

while i	t � T do
Set vi	t WD vŒ�i	t � on the interval Œi	t; .i C 1/	t�;
Compute the corresponding flow ˚

vi	t
t ;

Set �t WD ˚ vi	t
t #�i	t for t 2 Œi	t; .i C 1/	t�;

i  i C 1;
end

Fix an integer k > 0 and divide Œ0; T � in 2k intervals, i.e., choose 	t D T

2k
.

Call �kt the solution of this numerical scheme. For the convergence of the sequence
f�kŒ0; T �gk2N in C.Œ0; T �; Pp.R

d //, we have the following result:

Proposition 7.3. Let v satisfy Assumption 7.1, and �0 be given. Let �k D �kŒ0; T � be

constructed by Scheme 1 with	t D T

2k
. Then the sequence f�kŒ0; T �gk2N is a Cauchy

sequence in C.Œ0; T �;Pp.R
d //. The limit N� D limk �

k exists and is a solution
to (7.1).

The proof is similar to that of Theorem 6.2, thus we omit it. Moreover, we have:

Proposition 7.4. Let v satisfy Assumption 7.1, and �0 be given. Let � D �Œ0; T � be
the solution of (7.1), and �k the approximation of � computed using Scheme 1 with
	t D T

2k
. Then, for 	t sufficiently small, it holds

d.�; �k/ � KM e4T.LCK/ � 1
LCK 	t: (7.13)

7.3 Lagrangian and Eulerian Numerical Schemes

In this section we consider two other schemes for (7.1). We prove that all these
schemes converge to the solution of (7.1), whose existence and uniqueness have just
been proved. Scheme L is a Lagrangian scheme discrete in space and time, while
scheme E is a discrete Eulerian scheme.
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We start this section by introducing the spatial discretization. Fix a space
discretization parameter	x > 0 and discretize the space Rd , dividing it using a grid
of hypercubes with side 	x. For simplicity, from now on we will use the notation
for grids in R

2, calling each hypercube simply “square”. We denote the grid with the
symbol . Given a measure �, we denote the discretized measure (with an abuse of
notation) with the symbol Œ��, computed as follows: given a square � in the grid

, we define Œ�� on this square to be constant and with the same mass as � on
the square. More precisely, we have

This choice clearly permits to preserve the total measure, i.e., �.Rd / D Œ�� .Rd /.
We now estimate Wp

�
�; Œ��

�
using a map � that redistributes the mass

inside each square � only. Remark that � is not optimal in general. We have
W

p
p .�; Œ��/ � R

Rd
j�.x/ � xjp d�.x/ � pdp	xp , i.e.,

Wp

�
�; Œ��

� �
p
d	x: (7.14)

The same idea can be used to estimate Wp

�
�; Œ��

�
when � is a positive

measure with mass �.Rd / D C ¤ 1. We have:

Wp

�
�; Œ��

� � �.Rd /1=p
p
d	x: (7.15)

7.3.1 Discrete Lagrangian Scheme with Velocity of Centers

In this section we introduce the Lagrangian scheme. We indicate with �Lt the
function computed via this scheme. Fix a space discretization parameter 	x and
a time discretization 	t . We perform a first approximation �L0 of the initial data
�0 in space, that is �L WD Œ�0�. Given a square of the grid �0, we denote the
center of this square as x�0

and v.�0/ to indicate the velocity vŒ�L0 �.x�0
/, i.e., the

vector field vŒ�L0 � evaluated at the center of the square. This can be seen as the
approximation of the vector field vŒ�L0 � with a vector field that is piecewise-constant
on the same grid. We then translate the square �0 by the vector	t v.�0/. Then �L	t
is defined as the sum of all the translated squares, i.e.,

�L	t WD
X

�02
�L0 .�0/

��	t

	xd
:
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Then we compute the translation �2	t of the square �	t using v.�	t / WD
vŒ�L	t �.x�	t

/, i.e. the new velocity field evaluated at the center of the squares. The
process is repeated up to time T .

Scheme L Lagrangian, discrete in space and time, velocity at centers
initialization:

• Fix space and time discretization parameters	x, 	t , respectively;
• Fix a starting measure �0;
• Set �L0 WD Œ�0�;
• i  0;

while i	t � T do
Set x�i	t

WD center of the square �i	t ;
Set v.�i	t / WD vŒ�Li	t �.x�i	t

/;
Set �t WD �i	t C .t � i	t/v.�i	t /;

Set �Lt WD
P

�02 �Li	t .�0/
��t

	xd
for t 2 Œi	t; .i C 1/	t�;

i  i C 1;
end

One of the advantages of Scheme L is that the evolution of a square is still a
square of the same dimension and with sides parallel to axes of R

d . Hence the
measure �Lt is always piecewise-constant. Remark instead that the grid is used at
the beginning of the algorithm only, and that afterwards the squares do not belong
to the grid. Moreover, the squares can overlap and follow different velocities, thus
the evolution cannot be written globally as a solution of (7.1), since vŒ�Lt �.x/ is not
uniquely determined. Another important feature of the scheme is that the value of
the function inside each square does not change. Nevertheless, there is an interaction
among all the squares, since the velocity of each square is given by the map vŒ�t �.
One can also observe that, if at time l	t two different squares have the same
center, then they have the same dynamics from that moment on. This is possible,
since the evolution of centers is not given by a flow (that would give existence and
uniqueness), but by a discrete-time dynamics.

We now state a convergence result for this scheme.

Proposition 7.5. Let v satisfy Assumption 7.1, and �0 be given. Let �L D �LŒ0; T �
be computed using Scheme L with parameters	x and	t D T

2k
. Let � be the exact

solution of (7.1). Then, for	t < log.2/
L

, it holds

d.�; �L/ �
p
d

 

2edT maxf2L; 8Kge C 2Le
KTe LT � 1
K

!

	x C KM
e4T .LCK/ � 1
LCK 	t;
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where d�e indicates the ceiling function. Thus, as 	x; 	t ! 0, �L converges
weakly to � in C.Œ0; T �; Pc.R

d //.

Remark 7.4. The convergence of the Lagrangian schemes is not really surprising
in the context of pedestrian modeling by using measures. Indeed, we approximate
a set of discrete agents (the pedestrians) with a continuous measure. This is the
passage from microscopic to macroscopic model. Then, the scheme is conver-
gent for 	x! 0, that means that we go back to a microscopic scale, i.e., the
pedestrians.

One can improve this scheme by computing a more precise evolution of each
square. For example, one can allow deformations of the axes, rotations and so on.
This idea coincides with the idea of computing the vector field v for each square
as a certain approximation of the original v. For our scheme, we simply evaluate
v at the center, i.e., we perform a Taylor expansion of order 0. Improvements of
this kind certainly result in better convergence rates but need a more complicated
implementation.

7.3.2 Eulerian Scheme

In this section we present a last scheme to compute numerically the solutions
of (7.1). We indicate the solution of the scheme as �Et . We call it Eulerian, since
we are interested in the evolution of the value �t.P / at a point P not changing
in time. Instead, the previous schemes were Lagrangian, since we were interested
in the spatial evolution of a point x, i.e., its trajectory x.t/. This was particularly
clear in the previous scheme, in which we fixed a starting square �0 and studied its
evolution in time �t .

Fix a space discretization parameter 	x > 0 and a time discretization 	t .
We perform a first approximation �E0 of the initial datum �0 in space, that is
�E0 WD Œ�0�. Take a square of the grid � 2 . We denote the center of this
square as x� and vt .�/ to indicate the velocity vŒ�Et �.x�/, i.e., the vector field
vŒ�Et � evaluated at the center of the square. We compute the evolution of the square
� as its translation of the vector 	tv0.�/, i.e., � C 	tv0.�/. We define Q�	t as

the sum of all the translated squares, i.e., Q�	t WD P
� 2 �E0 .�/

��C	tv0.�/

	xd
.

For the moment, this coincides with Scheme 4. The difference is that we define �E	t
as the approximation of Q�	t computing the mean values on the starting grid, i.e.,
�E	t D Œ Q�	t �. We then repeat the same idea “evolution + mean values” starting
from �E	t and continue until reaching T .
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Scheme E Eulerian, discrete in space and time, velocity at centers
initialization:

• Fix space and time discretization parameters	x, 	t , respectively;
• Fix a starting measure �0;
• Set �E0 WD Œ�0�;
• i  0;

while i	t � T do
Set x� WD center of the square �;
Set vi	t .�/ WD vŒ�Ei	t �.x�/;

Set Q�.iC1/	t WDP�2 �Ei	t .�/
��C	tvi	t .�/

	xd
;

Define the approximate solution �E.iC1/	t WD Œ Q�.iC1/	t �;
i  i C 1;

end

We now prove that the scheme is convergent. First observe that �E is defined
for times j	t only, thus the distance d.�; �E/ is not defined by Eq. (7.12).
Nevertheless, we redefine it with a slight abuse of notation

d.�; �E/ WD supfWp

�
�t ; �

E
t

�
for t 2 Œ0; T � W �Et is definedg:

We have the following result.

Proposition 7.6. Let v satisfy Assumption 7.1, and �0 be given. Let �E be
computed using Scheme E with parameters 	x and 	t D T

2k
. Let � be the exact

solution of (7.1). Then d.�; �E/ � d.�; �L/C d.�L; �E/ and we have:

• For p > 1:

d.�L; �E/ � .21�1=p	tLC 1/eTKpd
21�1=p � 1 2.1�1=p/

T
	t 	x: (7.16)

For 	t ! 0 and lim	x;	t!0 2.1�1=p/
T
	t 	x D 0, �E converges weakly to �.

• For p D 1:

d.�L; �E/ �
p
d.	tLC 1/.eTK � 1/

K
� 	x
	t
: (7.17)

For 	t ! 0 and lim	x;	t!0 	x	t D 0, �E converges weakly to �.

Remark 7.5. It is interesting to observe that, if lim	x;	t!0 2.1�1=p/
T
	t 	x D 0

is satisfied for a certain p1, then it is satisfied for all p2 < p1. Moreover,
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lim	x;	t!0 	x	t D 0, i.e., the condition for p2 D 1 is satisfied as well. This is a
direct consequence of the fact that Assumption 7.1 becomes stronger for decreasing
p, thus the corresponding condition for convergence of the scheme can be weaker.

7.4 Interaction Velocities for Pedestrians

We now want to analyze interaction velocities for pedestrian models. More pre-
cisely, we focus on models of the type (6.34) and argue when such models do satisfy
the assumptions for existence of the corresponding transport equation (7.1).

From now on, we focus on the velocity field defined by interactions with other
pedestrians. A simple model is the following: take a kernel � W Rd 7! Œ0; C1/, set

x� WD
R
Rd
y �.x � y/ d�.y/

R
Rd
�.x � y/ d�.y/ ;

that is the center of mass of the crowd with respect to the kernel �, and define

vŒ��.x/ WD .x � x�/f
�Z

Rd

�.x � y/ d�.y/
�
; (7.18)

where f is a non-decreasing weight function. Observe that (7.18) is not defined forR
Rd
�.x � y/ d�.y/ D 0. In this case, we simply define vŒ��.x/ D 0. This choice

does not change the dynamics, since an area without mass undergoes no change in
time.

We now study two particular cases of velocity (7.18). The first is given by f .x/ �
1, while the second is given by f .x/ D x˛ with ˛ � 1. We prove that in the first
case v does not satisfy Assumption 7.1, while in the second it does.

Let f .x/ � 1. Given a kernel � that is not identically 0, we find a family of
measures �t such that vŒ�� is not even a continuous vector field with respect to �t
in the Wasserstein space. The idea is explained in Fig. 7.3.

Let R be such that supp.�/ � BR.0/. Since � is continuous, we have that the set
A WD f� > 0g is open. It is always possible to choose r sufficiently small to have
A n Br.0/ nonempty. Since it is open, we can always choose a point Qx in this set,
and � > 0 sufficiently small to have B�. Qx/ � A n Br.0/. Clearly, if y 2 B�. Qx/ then
jyj � r > 0. Finally, choose a compact set C of nonzero Lebesgue measure outside
the ball BR.0/, and let s be the maximum distance between elements of B�. Qx/ and
C , i.e., s D supfjx � yj W x 2 B�. Qx/; y 2 C g. Clearly it holds s <1.

Now define the family �t of measures by

�t WD
�
t
�B�.Qx/
�.B�. Qx// C .1 � t/

�C

�.C /

�
�;
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0

x̃

C

R
r

ε

s

A

Fig. 7.3 The convolution kernel does not satisfy Assumption 7.1 for f � 1

where � is the Lebesgue measure. Observe that vŒ�0�.0/ D 0, since
R
Rd
�.�y/ d�0

.y/D 1
�.C /

R
C
0 d�.y/D 0. Now observe that, for t > 0, we have

R
Rd
�.�y/ d�t.y/

> 0, hence

jvŒ�t �.0/j D
ˇ̌
ˇ
ˇ

R
Rd
y�.�y/ d�t .y/R

Rd
�.�y/ d�t.y/

ˇ̌
ˇ
ˇ D

ˇ
ˇ̌
ˇ
ˇ

t
�.B�.Qx//

R
B�.Qx/ y�.�y/ d�.y/

t
�.B�.Qx//

R
B�.Qx/ �.�y/ d�.y/

ˇ
ˇ̌
ˇ
ˇ

� inffjyj W y 2 B�. Qx/g
R
B�.Qx/ �.�y/ d�.y/R

B�.Qx/ �.�y/ d�.y/
� r:

As a consequence, vŒ�t �.0/ is not continuous with respect to the parameter t . We
now show that �t is continuous with respect to t in 0, i.e., limt!0 Wp .�0; �t / D 0.
Fix a time t and consider the measure �t shared by �0 and �t , that is exactly �t WD
.1 � t/ �C

�.C /
�. Thus, by (7.6), we have

Wp .�0; �t / D Wp .�0 � �t ; �t � �t / D Wp

�
t
�C

�.C /
�; t

�B�.Qx/
�.B�. Qx//�

�
:

Take the optimal map � between these measures, and observe that jx � �.x/j � s.
ThusWp .�0; �t / � st1=p . Since s and �.C / are finite and do not depend on t , then
Wp .�0; �t / is continuous at t D 0. Thus, vŒ�t �.0/ is not continuous with respect to
the distance Wp .�0; �t /.

We now study the case f .x/ D x˛ with ˛ � 1.
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Proposition 7.7. Let v D vŒ�� be defined by (7.18), with � a positive, Lipschitz
function with bounded support. Let f .x/ D x˛ with ˛ � 1. Then v satisfies
Assumption 7.1.

Proof. Let L be the Lipschitz constant of �, M D k�k1 its maximal value and R
the radius of its bounded support, i.e. supp.�/ � BR.0/. Set 
.x/ WD R

Rn
�.x �

y/ d�.y/, then we can write

vŒ��.x/D x
.x/˛�
R
y�.x � y/ d�.y/


.x/

.x/˛D
.x/˛�1

Z
.x�y/�.x�y/ d�.y/:

Recall that j�j D 1, then we have 0 � 
.x/ �M and jvŒ��.x/j � RM˛. Moreover:

jvŒ��.x/ � vŒ��.z/j �M˛�1
ˇ
ˇ
ˇ̌
Z

Rn

�
.x � y/�.x � y/ � .z � y/�.z � y/�d�.y/

ˇ
ˇ
ˇ̌ :

Using the triangular inequality we can write:

j.x � y/�.x � y/� .z � y/�.z � y/j � j.x � y/�.x � y/ � .x � y/�.z� y/j
C j.x � y/�.z� y/� .z � y/�.z � y/j
� .Ljx � yj CM/ jx � zj:

Going back to the integral, since jx � yj � R on the support of �.y/, we get:

jvŒ��.x/ � vŒ��.z/j �M˛�1jx � zj
�Z

Rn

.Ljx � yj CM/d�.y/

�

�M˛�1.LRCM/ jx � zj:

Finally we prove that v is Lipschitz with respect to the W1 distance. We have:

jvŒ��.x/ � vŒ��.x/j �M˛�1
ˇ
ˇ
ˇ
ˇ

Z

Rd

.x � y/�.x � y/ d.� � �/.y/
ˇ
ˇ
ˇ
ˇ :

We now show that g.y/ WD .x � y/�.x � y/ is a Lipschitz function. First write:

j.x � y1/�.x � y1/ � .x � y2/�.x � y2/j �
jy1 � y2j j�.x � y1/j C j.x � y2/j j�.x � y1/� �.x � y2/j :

Now if jx�y2j > R and jx�y1j > R then the second term vanishes because of the
bound on the support of �. Otherwise, possibly changing y1 with y2 in the estimate,
we can bound the first factor of the second term with R. Finally, we have:

j.x � y1/�.x � y1/ � .x � y2/�.x � y2/j �M jy1 � y2j CR L jy1 � y2j :
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Thus
R
Rd
.x � y/�.x � y/ d.� � �/.y/ � .M C RL/W1 .�; �/ via the

Kantorovich-Rubinstein duality formula (7.4), hence kvŒ��� vŒ��kC0 �M˛�1.MC
RL/W1 .�; �/.

7.5 Transport Equation with Source

In this section we deal with the case of transport equation with a source term:

8
<

:

@�

@t
Cr � .�vŒ��/ D hŒ��

�jtD0
D �0:

(7.19)

Unfortunately we cannot directly use the Wasserstein distance Wp .�; �/, since it
is defined only if the two measures �, � carry the same mass. Indeed, because of
the presence of the source h, the mass of the measure �t varies in time, hence in
general Wp .�t ; �s/ is not defined for t ¤ s. For this reason, we first define a
generalized Wasserstein distance W a;b

p .�; �/, combining the standard Wasserstein
and total variation distances, see Sect. 7.6 below.

We look for solutions to (7.19) in the space of Borel measures with finite mass
and compact support on R

d , denoted with Mc , that we endow with the generalized
Wasserstein distance W a;b

p . In this framework, we prove existence and uniqueness
of the solution of (7.19) with �0 2Mc under the following assumption:

Assumption 7.3. The function

vŒ�� W
�

Mc ! C1.Rd /\ L1.Rd /
� 7! vŒ��

satisfies:

• vŒ�� is uniformly Lipschitz and uniformly bounded w.r.t. �, i.e., there exist L, M
such that for all � 2Mc , x; y 2 R

d ,

jvŒ��.x/ � vŒ��.y/j � L jx � yj jvŒ��.x/j �M:

• v is a Lipschitz function, i.e., there exists N such that

kvŒ�� � vŒ��kC0 � NWa;b
p .�; �/:

The function

hŒ�� W
�

Mc !Mc

� 7! hŒ��



7.6 Generalized Wasserstein Distance 189

satisfies:

• hŒ�� has uniformly bounded mass and support w.r.t. �, i.e., there exist P;R such
that

jhŒ��j D jhŒ��.Rd / � P; supp.hŒ��/ 
 BR.0/:

• h is a Lipschitz function, i.e., there exists Q such that

W a;b
p .hŒ��; hŒ��/ � QW a;b

p .�; �/:

Remark 7.6. Assumption 7.3 can be relaxed in standard ways. For example, the
results still hold if we remove the uniform boundedness of v on R

d and ask for
uniform boundedness only at a point x0.

7.6 Generalized Wasserstein Distance

In this section we define the generalized Wasserstein distance W a;b
p .�; �/ and

describe some of its useful properties.
We first give a rough description of the construction. Imagine to have three

different admissible actions on �, �: either add/remove mass to �, add/remove
mass to �, or transport mass from � to �. The three techniques have their cost:
adding/removing mass has a unitary cost a (in both cases); transporting mass has the
classic Monge-Kantorovich cost J , multiplied by a fixed constant b. The distance
is the minimal cost of a mix of such techniques. We will show in the following that,
depending on �, �, all mixes are possible: either remove all the mass of � and � (if
they are very far), or transport the whole � to � (if they have the same mass and are
close enough), or a mix of the two (for example when � and � are very close but
with different masses). Instead, we will prove that adding mass is never optimal.

Remark 7.7. The fact that the unit cost of adding/removing mass is the same for the
two terms �, � is to ensure symmetry of W a;b

p .

First we need additional pieces of notation: If Q� � � and Q�.A/ � �.A/ for all
Borel sets, we write Q� � �. We now formally define the generalized Wasserstein
distance.

Definition 7.1. Given a; b 2 .0; C1/ and p � 1, the generalized Wasserstein
distance between � and � is:

W a;b
p .�; �/ WD inf

Q�; Q�2Mcj Q�jDjQ�j
.a j�� Q�j C a j� � Q�j C b Wp . Q�; Q�//: (7.20)
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m

−1 0

m̃

−y

v

x 1+ x

ṽ

x+ y

mass transportation

Fig. 7.4 Choice of Q�; Q� (shaded) for the computation of W a;b
p

Proposition 7.8. The operator W a;b
p is a distance. Moreover, one can restrict the

computation in (7.20) to Q� � �, Q� � � and the infimum is always attained.

One interesting feature of this distance is that the total variation term j�j and
the Wasserstein term Wp have different degree of homogeneity with respect to
translation in R

d , thus the optimal strategy for W a;b
p varies when translating one

measure. For example, compute W a;b
p .ı0; ıx/ as a function of x � 0. We have

jı0 � ıx j D 2 and Wp .ı0; ıx/ D x. Hence W a;b
p .ı0; ıx/ D minf2a; bxg. If

2a < bx, i.e., measures are “far”, then the optimal strategy is to delete both masses
ı0 and ıx , otherwise it is optimal to move ı0 to ıx with a translation.

Another simple example permits us to show that optimal strategies can be either
based on removing mass only (total variation strategy), or on transporting mass
only (Wp strategy), or on a mix of them. We give an example in Fig. 7.4. Take the
measures �, � on the real line with densities � D �Œ�1; 0�L , � D �Œx; 1Cx�L with
x � 0, where L is the Lebesgue measure. It is clear that the optimal strategy
amounts to choosing Q�, Q� with densities �Œ�y; 0�, �Œx; xCy�, respectively, for a certain
parameter y 2 Œ0; 1�. The total variation strategy is given by choosing y D 0, while
theWp strategy is given by y D 1. We now prove that all values of y can be optimal,
depending on x and the parameters a, b, p. We have j� � Q�j D j� � Q�j D 1 � y
and Wp . Q�; Q�/ D jyj1=p .x C y/. We choose for simplicity a D b D p D 1. Thus
W a;b
p .�; �/ D miny2Œ0; 1�.2� 2yC xyC y2/. A simple computation shows that the

minimum is attained for y D 2�x
2

if x 2 Œ0; 2�, and for y D 0 if x � 2. This clearly
shows that if the measures are very close (x D 0), then the best strategy is the Wp

one (since y D 1), while for measures that are far (x large) the best strategy is the
total variation one. As stated above, varying x 2 Œ0; 2� one has mixed strategies.

We now state some simple properties of W a;b
p .

Proposition 7.9. The following properties hold:

• W a;b
p .k�; k�/ � maxfk1=p; kgW a;b

p .�; �/ for k � 0.

• W a;b
p .�1 C �2; �1 C �2/ � W a;b

p .�1; �1/CW a;b
p .�2; �2/.

• a
ˇ
ˇ j�j � j�j ˇˇ � W a;b

p .�; �/ � a.j�j C j�j/.
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Proof. The first two properties follow from similar properties for j�j and Wp .
Concerning the third property, we first prove the first inequality. Choose Q� � �,
Q� � � realizing W a;b

p .�; �/, then j� � Q�j D j�j � j Q�j, j� � Q�j D j�j � j Q�j and
j Q�j D jQ�j. Therefore j�j � j Q�j D j�j � j Q�j � j�j � j�j. Assuming, without loss of
generality, that j�j � j�j, we get

W a;b
p .�; �/ � a j�� Q�jCa j� � Q�j � a.j�j� j Q�j/ � a.j�j� j�j/ D aˇˇ j�j� j�j ˇˇ:

Now, if we choose Q� D Q� D 0 in the right-hand side of (7.20), we get a.j�j C j�j/.
Since W a;b

p is the infimum on all Q�; Q�, also the second inequality is proved.

Topology of the generalized Wasserstein distance. We now show that W a;b
p

metrizes the weak convergence topology for tight sequences. We also prove that
R
d is complete with respect to W a;b

p .
We first state a simple lemma showing that the optimal choices Q�, Q�, in the

definition of the generalized Wasserstein distance, are close to one another in R
d .

Indeed, if we transfer too far masses between Q� and Q�, then it is cheaper to remove
such masses from both measures.

Proposition 7.10. Let �; � 2 Mc and Q�, Q� realize W a;b
p .�; �/. If Q� has support

contained in a compact set K , then the support of Q� is contained in the compact set

Kd WD
[

x2K
Bd.x/ (7.21)

with d D 2a=b. Here, Br.x/ denotes the closed ball of radius r centered in x.
Similarly, let Q�, Q� realizeW a;b

p .�; �/, and let 
 be the transference plan realizing
Wp. Q�; Q�/. If �0 � Q� has support contained in a compactK , then the corresponding
marginal �0, with respect to 
 , has support contained in Kd .

A sequence f�ng of measures is called tight if for each � > 0 there exists a compact
set K� � R

d such that �n.Rd n K�/ < � for all n. The following convergence
theorem states that W a;b

p metrizes the weak convergence for tight sequences.

Theorem 7.3. Consider a sequence f�ng �Mc and let � 2Mc . Then

W a;b
p .�n; �/! 0 , �n * � and f�ng is tight;

where * denotes weak convergence.

We now prove the completeness of Mc :

Proposition 7.11. Mc is complete with respect to W a;b
p .

Proof. Consider a Cauchy sequence f�ng with respect to W a;b
p . We first show that

f�ng is tight. Fix ı > 0 and let N D N.ı/ be such that W a;b
p .�n; �nCk/ < ı for

all n � N , k � 0. Denote by Q�k , Q�k the measures realizing W a;b
p .�N ; �NCk/ and
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k the transference plan realizingWp. Q�k; Q�k/. Let KN be a compact set containing
the support of �N , then supp. Q�k/ � KN for every k � 0 and, by Proposition 7.10,
supp. Q�k/ � Kd

N for every k � 0. Since a j�NCk � Q�kj � W a;b
p .�N ; �NCk/ < ı,

we get �NCk.Rd nKd
N/ � Q�k.Rd nKd

N /C j�NCk � Q�kj � ı=a. Now, given � > 0,
let ı D a� then the compact set K� D Kd

N.ı/ D Kd
N.a�/ satisfies the requirement for

tightness of the sequence f�N.a�/Ckg, k � 0. Then also the sequence f�ng is tight.
(Indeed for the finite sequence f�1; : : : ; �N.a�/Ckg tightness is obviously true.)

Now observe that j�nj is uniformly bounded, thus there exists a subsequence
f�nkg* �� for a certain ��. Using Theorem 7.3, we have that W a;b

p .�nk ; �
�/!

0, thusW a;b
p .�n; �

�/! 0.

Estimates under flow actions. To study (7.19) in the setting of the generalized
Wasserstein distance, we first estimate the evolution of W a;b

p under a flow action.
Recall the estimates provided by Propositions 7.1 and 7.2 for the Wasserstein
distance. Similar properties hold true for the generalized Wasserstein distance.

Proposition 7.12. Given v, w bounded and Lipschitz vector fields with Lipschitz
constant L, the following holds:

(i) W a;b
p .˚ v

t #�; ˚ v
t #�/ � eLtW a;b

p .�; �/.

(ii) W a;b
p .�; ˚ v

t #�/ � tkvkC0�.Rd /1=p .

(iii) W a;b
p .˚ v

t #�; ˚w
t #�/ � eLtW a;b

p .�; �/C �.Rd /1=p eLt�1
L
kv � wkC0 .

7.7 Existence and Uniqueness of Solutions for the Transport
Equation with Source

We now discuss the existence and uniqueness of the solution of (7.19), under
Assumption 7.3. The key tool is the construction of a candidate solution by sample-
and-hold. More precisely, the sample-and-hold method allows us to construct a
sequence of functions inC.Œ0; T �;M ac

0 / such that the limit exists and it is a solution
of (7.19).

With no loss of generality, assume that T D 1 and define a sequence of approxi-
mate solutions �k , k 2 N, as follows. Set	t WD 1

2k
and consider the decomposition

of the time interval in Œ0; 	t�, Œ	t; 2	t�, Œ2	t; 3	t�, : : : , Œ.2k � 1/	t; 2k	t�. The
construction is based on a Lagrangian scheme similar to that of Sect. 7.2. More
precisely, define:

• �k0 WD �0.
• �k.nC1/	t WD ˚

vŒ�kn	t �
	t #�kn	t C	thŒ�kn	t �.

• �kt WD ˚
vŒ�k �n	t
� #�kn	t C �hŒ�kn	t � with n the maximum integer such that t �

n	t � 0 and � WD t � n	t .
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One can prove that, given v, h satisfying Assumption 7.3, the sequence f�kg is a
Cauchy sequence for the space .C.Œ0; 1�;Mc/; D/, where

D.�; �/ WD sup
t2Œ0; 1�

W a;b
p .�t ; �t /:

Since .Mc; W
a;b
p / is a complete space, then so is .C.Œ0; 1�;Mc/; D/, thus the

sequence �k admits a limit N�t WD limk �
k
t . Since �k0 D �0 for all k, then N�0 D �0.

For each f 2 C1c .Œ0; 1� 	 R
d /, one can prove that

Z 1

0

Z

Rd

.@tf C vŒ N�t � � rf d N�t C f dhŒ N�t �/ dt D 0;

whence:

Proposition 7.13. The measure N�t WD limk �
k
t is a weak solution to (7.19).

We now prove the continuous dependence on the initial data of solutions to (7.19),
thus also implying uniqueness of the solution.

Theorem 7.4. Consider v, h satisfying Assumption 7.3 and let �t , �t be two
solutions of (7.19) with initial data �0, �0, respectively. Then

W a;b
p .�t ; �t / � et.LCQ/CN

R t
0 .�0.R

d /C�P /1=p d� W a;b
p .�0; �0/: (7.22)

In particular, under Assumption 7.3, the solution of (7.19) is unique.

Proof. Define w.t/ WD W a;b
p .�t ; �t /. We first prove that w is locally Lipschitz in

time. For this, write:

w.t C s/� w.t/ D W a;b
p .�tCs; �tCs/�W a;b

p .�t ; �t /

� W a;b
p .�tCs; �t /CW a;b

p .�t ; �t /CW a;b
p .�t ; �tCs/�W a;b

p .�t ; �t /

D W a;b
p .�tCs; �t /CW a;b

p .�t ; �tCs/:

It holds �tCsD˚ vŒ�t �
s #�t C s hŒ�t �Co.s/. Then, by Proposition 7.12 and Assump-

tion 7.3, we have:

W a;b
p .�tCs; �t / � W a;b

p .˚ vŒ�t �
s #�t ; �t /C s jhŒ�t �j C o.s/

� s kvkC0 �t .Rd /1=p C s P C o.s/
� s �M Œ�0.R

d /C tP�C P �C o.s/

where we used�t.Rd / � �0.Rd /CtP . A similar estimate holds forW a;b
p .�t ; �tCs/,

thus we conclude by uniform (local in time) estimates of o.s/.



194 7 Evolution in Measure Spaces with Wasserstein Distance

Now, again using Proposition 7.12 and Assumption 7.3, we can write:

w.t C s/ � W a;b
p .˚ vŒ�t �

s #�t ; ˚
vŒ�t �
s #�t /C s QW a;b

p .�t ; �t /C o.s/
� .1C Ls C o.s//W a;b

p .�t ; �t /C �t.Rd /1=p.s C o.s//N W a;b
p .�t ; �t /

C s QW a;b
p .�t ; �t /C o.s/

� w.t/
�
1C s�LCN .�0.R

d /C tP /1=p CQ�C o.s/
;

thus we get:

DCw.t/ D lim sup
s!0C

w.t C s/ � w.t/

s
� w.t/

�
LCN.�0.Rd /C tP/1=p CQ�:

By Gronwall inequality we get (7.22). The uniqueness of the solution of (7.19) is a
direct consequence.
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Chapter 8
Generalizations of the Multiscale Approach

Abstract In this chapter we present some natural generalizations of the multiscale
approach described in Chap. 5. In most of the cases, the following ideas are not
yet fully developed. Nevertheless, they give some interesting directions for future
research, from theoretical, numerical, and applied point of view.

8.1 Second Order Time-Evolving Measures

The measure-based crowd model introduced in Chap. 5, and deeply analyzed in
Chap. 6, is a first order one. In fact, the microscopic state of the test pedestrian
is fully characterized by her spatial position only, cf. Sect. 6.1. This causes the
equation for the collective distribution, cf. (6.6), (6.9), to be a conservation law
with the velocity expressed directly in terms of the pedestrian distribution itself,
cf. (6.5), (6.10). However, as reviewed in Chap. 4, some important pedestrian models
are based on the idea that walkers are (possibly nonstandard) Newtonian particles
reacting also to inertial effects. It is therefore of some interest, also in a multiscale
perspective, to extend the method of time-evolving measures to cases in which the
microscopic state of the test pedestrian is described not only by the space position
but also by the velocity.

8.1.1 Phenomenological Microscopic Model

To accomplish the aforesaid program we follow a procedure inspired by the one
presented in the first three sections of Chap. 6. Let X.t/, V.t/ be, respectively, the
position and the velocity of the test pedestrian at time t (see Sect. 6.1 for a precise
characterization of the test pedestrian). Obviously, the following relation must hold
true:

PX D V:
E. Cristiani et al., Multiscale Modeling of Pedestrian Dynamics, MS&A 12,
DOI 10.1007/978-3-319-06620-2__8,
© Springer International Publishing Switzerland 2014
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The actual key point is that modeling is now done at the level of velocity
variations, i.e., accelerations, therefore the phenomenological microscopic model
should explain how V changes in time. Mimicking the ideas proposed in Sects. 5.2
and 6.1, we assume that inertial effects are produced on the test pedestrian because
of two mechanisms:

• A personal desire to maintain a certain walking program, which we model
in terms of a desired acceleration depending on the current state of the test
pedestrian: ad.X; V /. For instance, the desired acceleration may express a
relaxation in time toward a desired velocity:

ad.X; V / D vd.X/� V
�

;

� > 0 being the relaxation time.
• Interactions with the surrounding collectivity, which we model in terms of

an interaction acceleration depending on the perceived distribution of the
microstates of nearby pedestrians. Specifically, we express such a distribution via
a measure �t on R

d 	 R
d , such that d�t.x; v/ is the (infinitesimal) probability

of finding a walker in the space volume dx centered at x 2 R
d with a velocity

comprised in the volume dv centered at v 2 R
d . Since �t accounts for the joint

distribution of the microscopic position and velocity of walkers, it provides a
mesoscopic (or kinetic) representation of the crowd. The structure of �t over
.x; v/ 2 R

d	Rd translates the perception of the test pedestrian. IfN pedestrians
form the crowd, we write the interaction acceleration as:

ai D N
“

S .X/�Rd
K.X; V; y; w/ d�t .y; w/;

where S .X/ is the sensory region (interaction neighborhood) of the test
pedestrian, cf. (5.10), and K W .Rd 	 R

d / 	 .Rd 	 R
d /! R

d is the interaction
kernel accounting for single interaction instances, pretty much like in the spirit
of the first order model of Chap. 6.

Setting PV D ad.X; V / C ai we are finally left with the following
phenomenological microscopic model:

8
<̂

:̂

PX D V
PV D ad.X; V /CN

“

S .X/�Rd
K.X; V; y; w/ d�t .y; w/:

(8.1)

A pointwise, i.e., individual-by-individual, perception may be modeled by

�t D 1

N

NX

kD1
ı.xk.t/; vk.t//;
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where f.xk.t/; vk.t//gNkD1 are the mechanical microstates of theN walkers at time t
and the normalization coefficient 1

N
is due to that �t has to be a probability measure.

The phenomenological model specializes then as

8
ˆ̂̂
<

ˆ̂̂
:

PX D V
PV D ad.X; V /C

NX

kD1
xk2S .X/

K.X; V; xk; vk/:

Conversely, a perception addressed to the crowd ahead as a whole may be
modeled by

d�t .x; v/ D f .t; x; v/ dx dv;

where f W Œ0; C1/ 	 R
d 	 R

d ! Œ0; C1/ is the probability density of the
microstates at time t . Then the phenomenological model takes the form:

8
<

:

PX D V
PV D ad.X; V /CN

Z

Rd

Z

S .X/

K.X; V; y; w/f .t; y; w/ dy dw:

8.1.2 Mathematical-Physical Model

The distribution of microstates is a material quantity for pedestrians, since it is
generated by the latter themselves. Therefore it has to evolve in time across the state
space R

d 	 R
d according to the crowd dynamics. Owing to this argument, we join

to (8.1) the following equation:

�t D .X; V /.t/#�0; (8.2)

where �0 is the initial distribution of microstates, which means

�t .E/ D �0..X; V /.t/�1.E//; 8E 
 R
d 	 R

d measurable:

In particular, the set appearing at the right-hand side is explicitly:

.X; V /.t/�1.E/ D f.X.0/; V .0// 2 R
d 	 R

d W .X.t/; V .t// 2 Eg;

i.e., it is the set of all possible initial states which lead the test pedestrian in the
subset of microstates E at time t > 0.

The coupling of (8.1) and (8.2) enables us to obtain an evolution equation of
the measure �t . The procedure is similar to that used in Sect. 6.2: We pick a test
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function 
 2 C1c .Rd 	 R
d /, 
 D 
.x; v/, and, thanks to (8.2), we compute the

time derivative of �t pretty much in the spirit of Reynolds transport theorem:

d

dt
h�t ; 
i D d

dt

“

Rd�Rd

 d�t D d

dt

“

Rd�Rd

.X; V / d�0

D
“

Rd�Rd
˚rx
.X; V / � PX Crv
.X; V / � PV

�
d�0;

where rx , rv denote the gradient with respect to the variables x and v, respectively.
Then, invoking (8.1), we continue the calculation as:

D
“

Rd�Rd

(

rx
.X; V / � V

C rv
.X; V / �
"

ad.X; V /CN
“

S .X/�Rd
K.X; V; y; w/ d�t .y; w/

#)

d�0

and finally we go back to �t using again (8.2):

D
“

Rd�Rd

(

rx
 � vCrv
 �
"

adCN
“

S .�/�Rd
K.�; �; y; w/ d�t .y; w/

#)

d�t :

(8.3)

After defining the Eulerian acceleration field

aŒ�t �.x; v/ WD ad.x; v/CN
“

S .x/�Rd
K.x; v; y; w/ d�t .y; w/; (8.4)

we read (8.3) in distributional sense as

d

dt
h�t ; 
i D h�t ; rx
 � vi C h�t ; rv
 � aŒ�t �i; (8.5)

whence, “integrating by parts” in .x; v/ at the right-hand side, we further say that
�t satisfies formally the conservation law

@�t

@t
C v � rx�t Crv � .aŒ�t ��t / D 0 (8.6)

provided (8.3) holds for all test functions 
 2 C1c .Rd 	 R
d /.
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8.1.3 Mass and Momentum Equations

Equation (8.6) is in principle a sufficient model for studying the mesoscopic
evolution of the crowd collectivity, also from a multiscale perception viewpoint.
It is nonetheless useful to link �t to more tangible physical concepts, in the same
spirit as in Sect. 6.3 we bridged the physical version of the model, based on the
crowd mass, and its probabilistic interpretation. As we will see, in the present case
we do not only need the concept of mass but also that of linear momentum in order
to fully account, at a higher scale, for the dynamics described by (8.1), (8.6). For
this reason, we say that the present model is a second order one.

To begin with, we consider N specific instances of the test pedestrian which
embody the walkers of the crowd. To this purpose, we introduce N pairs of
variables .X1; V 1/; .X2; V 2/; : : : ; .XN ; V N / modeling the microstates of the
various individuals composing the crowd. Then we technically have:

.Xk.t/; V k.t// D .X; V /.t/ ı . Nxk; Nvk/; k D 1; : : : ; N;

where Nxk , Nvk are the initial position and velocity, respectively, of the k-th walker.
From (8.2), by understanding the . Nxk; Nvk/’s as independent and identically dis-
tributed and �0 as their (common) law, it readily follows that �t is the law of
.Xk.t/; V k.t// for all t > 0, which is coherent with the interpretation we gave
it when constructing the interaction acceleration ai in the phenomenological model.
Hence, again, the idea is that the uncertainty in the initial states of pedestrians is
transported at future times and (8.6) tells us how.

From �t we obtain the law of the sole Xk.t/ as the first marginal, say Q�t .
Specifically, Q�t is the probability measure on R

d such that (see Appendix A,
Sect. A.5):

Q�t .E/ D �t .E 	 R
d /; 8E 
 R

d measurable:

Inspired by the conclusion of Sect. 6.3, we then define the mass of the crowd as the
measure

�t WD N Q�t ; (8.7)

which is such that �t.E/ D E ŒYE.t/� for all measurable E 
 R
d , where YE.t/ is

the same as in (6.11).
From �t we also extract a second useful information related to the variable V k.t/.

By disintegrating �t with respect to its first marginal Q�t (see again Appendix A,
Sect. A.5) we obtain a new probability measure on the space of the velocity,
parameterized by x, say O�t .�jx/, such that

�t .dx dv/ D O�t .dvjx/˝ Q�t .dx/: (8.8)
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In practice, O�t .�jx/ and Q�t allow �t -integrals on R
d 	 R

d to be reduced to iterated
integrals on R

d . Recalling the conditioned probability theorem, it is useful to
understand O�t .�jx/ as the probability distribution of V k.t/ conditioned to the point
x. As such, it can be used to compute the average velocity of the crowd, say u.t; x/,
in the point x at time t :

u.t; x/ WD
Z

Rd

v d O�t .vjx/: (8.9)

Equipped with all of this preliminary material, we can formally deduce from (8.6)
two coupled partial differential equations for the evolution in time and space of the
velocity-averaged quantities �t , u.

8.1.3.1 Mass Equation

In (8.5) we choose a test function 
 D 
m.x; v/ D '.x/ m.v/, where ' 2 C1c .Rd /
is fixed while f mgm�1 � C1c .Rd / is a sequence such that 0 �  m � 1 with
uniformly bounded gradient in R

d for all m and moreover such that  m ! 1,
rv m ! 0 pointwise in R

d as m ! 1 (the existence of such a sequence is
guaranteed by Urysohn’s Lemma). Then using (8.8) we obtain:

d

dt

Z

Rd
'.x/

Z

Rd
 m.v/ d O�t .vjx/ d Q�t .x/ D

Z

Rd
rx'.x/

Z

Rd
v m.v/ d O�t .vjx/ d Q�t .x/

C
Z

Rd
'.x/

Z

Rd
aŒ�t �.x; v/ � rv m.v/ d O�t .vjx/ d Q�t .x/:

By integrating further in time, then passing to the limit m ! 1 by dominated
convergence, and finally going back to the time derivative in the obtained result we
get:

d

dt

Z

Rd

'.x/ O�t .Rd jx/ d Q�t .x/ D
Z

Rd

rx'.x/ �
�Z

Rd

v d O�t .vjx/
�
d Q�t .x/:

But O�t .Rd jx/ D 1 for all x because every O�t .�jx/ is a probability measure, while at
the right-hand side we recognize the definition (8.9) of u. Hence:

d

dt

Z

Rd

' d Q�t D
Z

Rd

rx' � u d Q�t ;

which, up to multiplying by N both sides and recalling (8.7), is a weak form of the
mass conservation equation

@�t

@t
Cr � .�tu/ D 0; (8.10)
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cf. (6.6). The difference with respect to (6.6) is that now the transport velocity does
not appear directly in terms of �t itself. A second equation linking �t and u is
therefore needed, which, as previously anticipated, makes the resulting model a
second order one.

8.1.3.2 Momentum Equation

The linear momentum of the crowd mass �t is the vector-valued measure u�t ,
sometimes denoted p or q depending on the context, which is absolutely continuous
with respect to �t with vector-valued density u.t; �/. Its action against a test function
' 2 C1c .Rd / is defined to be

hu�t ; 'i D
Z

Rd

'.x/u.t; x/ d�t .x/:

The second equation to be joined to (8.10) is one for the linear momentum, which
indeed appears in (8.10) under the divergence operator. In order to obtain it, we start
by multiplying formally (8.6) by v:

@

@t
.v�t /C v.v � rx�t /C vrv � .aŒ�t ��t / D 0;

which in the proper distributional sense has to be understood as:

d

dt
h�t ; v
i D h�t ; .v˝ v/rx
i C h�t ; aŒ�t �rv � .v
/i (8.11)

for all test functions 
 2 C1c .Rd 	R
d /.

Remark 8.1. The first term at the right-hand side is worth a brief comment.
Originally it appears at the left-hand side as hv � rx�t ; v
i D hrx � .v�t /; v
i,
namely the distributional form of v.v �rx�t /. By the derivation rules of distributions
it can be rewritten as �hv�t ; v � rx
i D �h�t ; v.v � rx
/i, thus the point is to see
that .v ˝ v/rx
 D v.v � rx
/. This is actually immediate, after considering that
v˝ v denotes the following matrix in R

d�d :

v˝ v D

0

B
B
@

v21 v1v2 : : : v1vd
v2v1 v22 : : : v2vd
: : : : : : : : : : : : : : : : :

vdv1 vdv2 : : : v2d

1

C
C
A ;

where v1; v2; : : : ; vd are the d scalar components of v.
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We now choose 
 in (8.11) as 
.x; v/ D '.x/ m.v/, where ',  m are as before,
and, utilizing again (8.8), we compute:

d

dt

Z

Rd

'.x/

�Z

Rd

v m.v/ d O�t .vjx/
�
d Q�t .x/

D
Z

Rd

rx'.x/
�Z

Rd

.v˝ v/ m.v/ d O�t .vjx/
�
d Q�t .x/

C
Z

Rd

'.x/

�
d

Z

Rd

aŒ�t �.x; v/ m.v/ d O�t .vjx/
�
d Q�t .x/

C
Z

Rd

'.x/

�Z

Rd

aŒ�t �.x; v/.v � rv m.v// d O�t .vjx/
�
d Q�t .x/:

Passing to the limit m ! 1 as before by dominated convergence, we further
discover:

d

dt

Z

Rd

'.x/u.t; x/ d Q�t .x/ D
Z

Rd

rx'.x/
�Z

Rd

v˝ v d O�t .vjx/
�
d Q�t .x/ (8.12)

C d
Z

Rd

'.x/

�Z

Rd

aŒ�t �.x; v/ d O�t .vjx/
�
d Q�t .x/:

(8.13)

Next we notice that
Z

Rd

v˝ v d O�t .vjx/ D
Z

Rd

.v�u.t; x//˝ .v�u.t; x// d O�t .vjx/Cu.t; x/˝u.t; x/:

Particularly, the tensor

T.t; x/ WD
Z

Rd

.v � u.t; x//˝ .v � u.t; x// d O�t .vjx/ (8.14)

accounts for the average quadratic variation of V k
t in the point x (recall indeed that

u.t; x/ is the expectation of V k
t in x). In classical Continuum Mechanics it is called

the stress tensor as it expresses the internal stress of a continuum medium (such
as, for instance, pressure and viscous effects in a fluid) generated by the thermal
state of its composing particles. In our context, however, it is preferable to stay
with the original statistical interpretation, since crowds can hardly be assimilated
to a continuum in the classical mechanical sense. By further defining the average
acceleration in the point x at time t :

b.t; x/ WD d
Z

Rd

aŒ�t �.x; v/ d O�t .vjx/ (8.15)
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we finally rewrite (8.13) in the form:

d

dt

Z

Rd

'u d Q�t D
Z

Rd

rx'.TC u˝ u/ d Q�t C
Z

Rd

'b d Q�t ;

whence, after multiplying both sides by N , we recognize a weak form of

@

@t
.�tu/Cr � Œ�t .u˝ uC T/� D �tb; (8.16)

expressing the balance of linear momentum of the crowd.
The terms T, b are defined in terms of u itself and of the phenomenological

model of pedestrian acceleration set forth at the beginning. Nevertheless they cannot
completely get rid of the knowledge of the crowd mesoscale, because they depend
on �t both directly (cf. aŒ�t � in b) and through O�t .�jx/. In other words, the averaged
model (8.10), (8.16):

8
ˆ̂
<

ˆ̂
:

@�t

@t
Cr � .�tu/ D 0

@

@t
.�tu/Cr � Œ�t .u˝ uC T/� D �tb

(8.17)

is not fully self-consistent as it requires some information from a lower scale. This
does not happen in the case of first order models discussed in Sects. 6.1–6.3 because
there the relationship between the mesoscale (represented by �t ) and the macroscale
(viz. the averaged scale represented by �t ) is simply a direct proportionality.

8.1.4 Monokinetic Solutions

Since (8.17) is numerically much more affordable than (8.6) (in fact the state
space is reduced to R

d rather than R
d 	 R

d ), people generally tend to use it as a
prototype for second order models. The modeling approach consists then in devising
appropriate phenomenological closures of T and b involving only �t , u so as to
obtain a closed set of equations. This way the final model departs from the original
phenomenological one (8.1), often in a hardly controllable way, and has therefore
to be accepted per se.

A very special case of (8.17), which both uses the true expressions (8.14), (8.15)
of T, b and gives rise to a closed averaged model, is that of the so-called monokinetic
solutions. The basic assumption is that at every time t the test pedestrian perceives
deterministically in every point x just the average velocity u.t; x/, according to an
extremely synthetic process of evaluation and elaboration of the information to be
retained for interactions. This idea can formalized by postulating:

O�t .�jx/ D ıu.t; x/;
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which implies �t .dx dv/ D ıu.t; x/.dv/ ˝ Q�t .dx/, thus owing to (8.14) and to (8.4),
(8.15):

8
<

:

T D 0
b.t; x/ D ad.x; u.t; x//C

Z

S .x/

K.x; u.t; x/; y; u.t; x// d�t .y/:

Notice that T D 0 is coherent with the assumed absence of fluctuations in
the mesoscopic distribution of the velocity. Recalling the classical meaning of T
as stress tensor, the monokinetic solutions are sometimes also called pressureless
solutions by analogy with the terminology used in fluid dynamics.

8.2 Multidimensional Multiscale Coupling

In this section we show how the multiscale model presented in Chap. 5 can handle
multiple-dimensional dynamics in the same framework. We consider the case in
which the domain of computation has one or more dimensions much more relevant
than the others. For example, a road is a two-dimensional domain such that its
length is usually much more relevant than its width. In these cases, a macroscopic
description can avoid the full dimensionality, being more interested in the motion
along the leading dimensions. On the other hand, a microscopic description often
needs a complete view of the domain, in order to catch small but important effects.

The measure-theoretic setting allows us to obtain easily and rigorously such
a multiscale multidimensional coupling. It suffices to assume that the density
� D �.t; x1; : : : ; xd /, do not actually depend on all the space variables. The
mathematical model remains formally the same, but for the fact that the advection
velocity v in the equation for the density has to be projected onto the leading
directions. For example, in two dimensions (d D 2), if the first dimension is
dominating we assume

@�

@x2
D 0 ) � D �.t; x1/

and the multidimensional model reads (cf. (5.24)–(5.25)):

8
<̂

:̂

PXk.t/ D v.t; Xk.t//

@�

@t
Cr � .�v � i/ D 0

(8.18)

where i D .1; 0/ is the unit vector in the leading direction. Notice that, thanks to
the fact that v is projected in one dimension after being computed as genuinely two-
dimensional, multiscale interactions are automatically evaluated with the correct
dimensionality. The microscopic two-dimensional pointsXk.t/ perceive a spatially
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Fig. 8.1 Two one-way roads
with a junction (green square)

two-dimensional density, simply constant in the x2-direction. On the other hand, the
macroscopic one-dimensional density � is affected only by the first component of
the interactions with the mass points, which are however two-dimensional.

It is very important to note that this multidimensional approach avoids, at the
macroscopic level, the imposition of boundary conditions along the (negligible) x2-
direction. Such an additional constraints would be quite artificial from the physical
point of view and can massively affect the solution inside the domain, posing also
some problems in the numerical approximation.

As a natural application, we consider the vehicular traffic flow on two orthogonal
roads. At the macroscopic scale, the interest is mainly in the propagation of density
waves along the road length, so that the roads are better described as a one-
dimensional domains. On the other hand, near the junction it can be crucial to retain
the detail of possible lateral displacements of single cars. Therefore, describing the
road as a two-dimensional domain is required at the microscopic scale.

The computational domain˝ D ˝1 [˝2 is depicted in Fig. 8.1.
˝1 is the horizontal road and˝2 is the vertical road. Microscopic cars can freely

move in the whole domain, while car densities are defined only in the middle line
of the roads.

We can use the multipopulation version of the model introduced in Sect. 5.6. Here
we have two populations, the first one continuously enters the domain from the left
and flows in the horizontal direction, while the second one continuously enters the
domain from the bottom and flows in the vertical direction. The density of the first
population is �1 D �1.t; x1/ and that of the second population is �2 D �2.t; x2/.
Coherently with the observation that cars are indeed anisotropic particles, we model
the endogenous interaction neighborhood as the right half-ball in the road ˝1 and
the upper half-ball in the road˝2, for translating the fact that drivers normally look
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Fig. 8.2 (a) Simulation with � D 0 (genuinely macroscopic dynamics). No particular effect is
visible at the junction. (b) Simulation with � D 0:7 (multiscale dynamics). Traffic light effect
beyond the junction is visible in both densities and microscopic cars

ahead only. Conversely, we model the exogenous interaction neighborhood as the
intersection of the right and bottom half-balls in the road ˝1 and the upper and
left half-balls in the road ˝2, for translating the fact that drivers look also in the
direction of the incoming opposite flow of cars, especially at the junction.

In order to deal with the multidimensional domain, the numerical method
presented in Sect. 5.5 is easily modified. The main difference here is that the
equations for the densities are one-dimensional, therefore the two-dimensional
quantities computed by the microscopic part of the algorithm have to be projected to
scalar quantities before they can be used by the macroscopic part of the algorithm.
For pictorial purposes, the one-dimensional densities �1.t; x1/ and �2.t; x2/ of the
two populations are represented coloring the whole two-dimensional domain using
the extended functions N�p.t; x1; x2/ D �p.t; xp/, p D 1; 2.

Results of the simulations with � D 0 (genuinely macroscopic dynamics) and
� D 0:7 (multiscale dynamics) are reported in Fig. 8.2.

Let us stress that the junction under consideration is not regulated by any
give-way rule nor by red-green traffic light cycles. If the macroscopic scale leads
the dynamics of both point cars and densities, the traffic flow is quite uniformly and
do not show any notable behavior at the junction. Instead, if the multiscale dynamics
is active, a clear traffic light effect appears beyond the junction: By this we mean an
oscillatory pattern which shows up since groups of cars from incoming roads occupy
alternately the junction, giving rise to a sequence of density wave packets along
the outgoing roads. This is due to the fact that interactions among point cars are
much different from those among densities: More granularity expedites the break
of symmetry and triggers the typical alternate occupation of the space also at the
macroscopic scale.
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We conclude stressing that this interesting result strongly depends on the
multidimensional coupling. A fully two-dimensional approach gives much less clear
outcomes on the densities, especially due to the boundary conditions to be imposed
at the sides of the roads. Densities tend to accumulate at one side of the road (as
microscopic cars do) making the traffic light effect less evident. The multidimen-
sional coupling gives also a clear advantage in terms of computational time.

8.3 Space-Time-Dependent Multiscale Coupling

The parameter � , which determines the multiscale coupling, is assumed to be
constant in (5.22). This implies that the contribution of the microscopic and
macroscopic scales to the dynamics is the same everywhere in the domain ˝ .
However, as a further model refinement, one may imagine situations in which their
relative importance is actually different in different sub-domains. For instance, it
might be important to retain the microscopic perceptive detail only where the shape
of the domain is particularly complex, the dynamics is highly nonlinear, or many
agents interact with each other. Conversely, where no complex dynamics are present,
a gross continuous description may be the appropriate way for representing the
actual agent perception.

This amounts to converting � into a function of x, and possibly also of t ,
� D �.t; x/, which takes values in the interval Œ0; 1�. Nevertheless, if this
modification is straightforwardly introduced in (5.22) then nontrivial technicalities
arise in the resulting measure equation (5.1). In fact, in such a case one has to care
about time and space derivatives of � , too, which ultimately cause the multiscale
equation (5.23) to be no longer the formal linear combination of Eqs. (5.24) valid
for the discrete and continuous components. This has also consequences on the
numerical scheme, which cannot take advantage anymore of the separate transport
of the two components as expressed by (5.34). Therefore a different strategy for
introducing a variable multiscale coupling is preferable.

To this purpose we extend the modeling approach presented in Sects. 6.1–6.3 by
differentiating between the mass perceived by the test agent and that transported by
the agents on the whole. In practice, we rewrite (6.1)–(6.3) as:

8
<

:

PX D vd.X/C
Z

S .X/

K.X; y/ d�t .yjX.t//
�t D X.t/#�0;

(8.19)

where, at time t ,X D X.t/ is the position of the test pedestrian and �t.�jX.t// is the
perceived mass inX.t/, whereas �t is the transported mass. In principle, �t .�jX.t//
and �t are two different non-negative measures with the only requirement that:

�t .R
d jX.t// D �t.Rd / D N; 8 t > 0;
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N being the total number of agents considered in the model. The conceptual differ-
ence between �t .�jX.t// and �t is that the former need not be, strictly speaking, a
physical quantity, because it represents the mass filtered by the perception of the test
agent. For this reason, it may not follow directly the movement of the individuals.
Instead, the latter expresses genuinely the physical group mass, which is a material
quantity transported by the agents.

Now assume that the test agent has a possibly multiscale perception �.t; X/ of
the mass distributed in its interaction neighborhood S .X/, so that the measure
�t .�jX.t// can be given the following form:

�t .�jX.t// D �.t; X.t//mt C .1� �.t; X.t///Mt ;

where we used the same symbols mt , Mt for the discrete and continuous masses,
respectively, like in (5.21). Hence the first equation in (8.19) becomes:

PX D vd.X/C �.t; X/
NX

kD1
xk2S .X/

K.X; xk/C .1� �.t; X//
Z

S .X/

K.X; y/�.t; y/ dy

D vd.X/C �.t; X/viŒmt �.X/C .1 � �.t; X//viŒMt �.X/: (8.20)

On the other hand, notice that both mt and Mt can play, separately, the role of
physical masses transported by the agents. Therefore, we can take either �t D mt

or �t D Mt in (8.19) and let them be transported by the flow field (8.20). By the
same procedure described in Sect. 6.2 we get then:

8
ˆ̂<

ˆ̂
:

@mt

@t
Cr � .mtvŒmt ; Mt �/ D 0

@Mt

@t
Cr � .MtvŒmt ; Mt �/ D 0;

(8.21)

where

vŒmt ; Mt �.x/ D vd.x/C �.t; x/viŒmt �.x/C .1� �.t; x//viŒMt �.x/ (8.22)

is the transport field, which incorporates the non-constant multiscale coupling
(compare (8.21)–(8.22) with (5.24)–(5.25)). Scaling mt and Mt with respect to
the total number N of agents further yields the probabilistic interpretation of these
equations, in the very same spirit as Sect. 6.3.

The framework (8.21)–(8.22) is suitable for the use of the analytical and numeri-
cal machinery set forth in the previous chapters. In fact, the discrete and continuous
masses are transported separately by construction, being however coupled by the
velocity field. The multiscale coupling parameter � , now variable in space and
time, is used only where it is really needed, i.e., in the expression of the velocity
for modeling the agent perception and their resulting interactions. This structure is
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Fig. 8.3 Computational
domain partitioned in two
regions: The microscopic
scale leads the dynamics in
the green area V , the
macroscopic scale in the
remaining region
.˝1 [˝2/ n V

particularly convenient for implementing also quite elaborated modeling solutions,
in which � depends on x and t through the solution to (8.21). For instance, one
may argue that the test agent perception is such that the lower the continuous
mass distributed in its interaction neighborhood the stronger the effect of localized
individualities, and vice versa. Two possible choices of � , actually not completely
equivalent to one another despite appearances, which formalize this idea are:

�.t; x/ D 1 � 1

N
Mt.S .x// or �.t; x/ D 1

N
mt.S .x//;

to be plugged directly into (8.22).
In order to exemplify in practice the effect of a variable multiscale coupling,

we refer again to the scenario described in Sect. 8.2 (see Fig. 8.1). We expect
that a microscopic description is actually needed only at the junction, where
granularity plays a major role in shaping the exogenous interactions between the
crossing populations. Conversely, away from the junction, where only endogenous
interactions occur, a purely macroscopic approach is able to catch all the details of
the dynamics. In order to simulate this situation, we simply need to set a priori the
space-dependence of � :

�.x/ D �V .x/ D
(
1 if x 2 V
0 if x 2 .˝1 [˝2/ n V; (8.23)

where V � R
2 is a neighborhood of the junction ˝1 \ ˝2 (see Fig. 8.3).

Figure 8.4a–c shows the outcome of the simulation.
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Fig. 8.4 (a) �.x/ � 0. The macroscopic scale leads everywhere; (b) �.x/ D �V .x/. The
microscopic scale leads near the junction, the macroscopic scale elsewhere; (c) �.x/ � 1. The
microscopic scale leads everywhere; (d) Car density along the vertical road with �.x/ � 0 (top),
�.x/� 1 (middle), and �.x/D �V .x/ (bottom)

We recall that both scales are present everywhere and evolve at all times (even
if they are not always plotted), thus no transmission conditions are imposed at the
interfaces of V . Comparing the results obtained with �.x/ � 0, �.x/ � 1, and
�.x/ D �V .x/, we see that the macroscopic approach is not able by itself to trigger
a self-organizing alternate passage beyond the junction (Fig. 8.4a). By using a purely
microscopic approach, the traffic light effect comes up at and beyond the junction
(Fig. 8.4c). However, an annoying effect also appears before and, less visible,
beyond the junction: Behind every point car (not shown) density accumulates,
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due to strong interactions with Dirac delta’s. Such an effect perturbs the density,
especially where it should be ideally constant (e.g., before the junction). The space-
dependent multiscale coupling triggers a self-organizing alternate passage at the
junction, perfectly visible in terms of density waves, which persists also when the
microscopic scale ceases its influence on the dynamics (Fig. 8.4b). This numerical
experiment shows that self-organization can be obtained by adding granularity only
at the junction rather than from the very beginning and motivates the use of the
microscopic scale only where it is really needed.

To better quantify this qualitative discussion, we plotted in Fig. 8.4d the
one-dimensional density along the vertical road ˝2. Fully macroscopic dynamics
do not show any appreciable effect either at the junction or beyond it. Conversely,
fully microscopic dynamics generate irregular waves beyond the junction, as well
as a noisy density profile before it. Finally, mixed dynamics (fully microscopic near
the junction, fully macroscopic elsewhere) produce a constant density before the
junction and clear density wave packets beyond it.

8.4 More General ODE-PDE Coupling

As already anticipated in Sect. 2.1, the multiscale coupling discussed in Chap. 5
suggests a general method to couple a PDE and a system of ODEs modeling the
same physical phenomenon. Indeed, once the measure � is specialized in a sum of
Dirac delta’s and in an absolutely continuous measure, we simply get a system of
ODEs (2.1) and a PDE (2.2) coupled by means of a common velocity field (2.3). In
this section we show, by means of a specific example, how this coupling idea can be
extended to a large class of equations and physical phenomena.

8.4.1 Coupling the Heat Equation and the Brownian Motion

The goal of this section is to apply the multiscale coupling to a well-known example
in mathematical physics and probability theory. Let us consider the following
system of Stochastic Differential Equations (SDEs)

(
dXk

t D dW k
t

Xk
0 D 0

k D 1; : : : ; N; (8.24)

where W k
t is the d -dimensional Brownian motion (standard Wiener process). The

Fokker-Planck equation associated with the Brownian motion is the heat equation
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8
<̂

:̂

@u

@t
� 1
2
4u D 0; t > 0; x 2 R

d

u.0; x/ D ı0; x 2 R
d ;

(8.25)

where ı0 is the Dirac delta centered in 0. The solution u to (8.25) describes the time
evolution of the probability density function of each Brownian motion generated
by (8.24), i.e.

Prob.Xk
t 2 A/ D

Z

A

u.t; x/ dx; 8A � R
d ; k D 1; : : : ; N:

Defining the macroscopic velocity field vM as

vM.t; x/ WD �ru.t; x/

2u.t; x/
; (8.26)

(8.25) can be formally written as

8
<

:

@u

@t
Cr � .uvM/ D 0; t > 0; x 2 R

d

u.0; x/ D ı0; x 2 R
d :

(8.27)

The form (8.27) makes the velocity field vM , which transports the probability
density function, appear explicitly. On the microscopic side, let us write (8.24) as

( PXk
t D �kt

Xk
0 D 0

k D 1; : : : ; N; (8.28)

where �t is the Gaussian white noise process. It is important to note that the
velocities �kt , k D 1; : : : ; N define a vector field only at the agent positions Xk

t ,
k D 1; : : : ; N . In order to make the macroscopic part of the system interact with
the microscopic part, the latter should define a microscopic velocity field at every
point x of the space. This can be done by using the following natural definition for
the microscopic (stochastic) velocity field vm

vm.t; x/ WD

8
<̂

:̂

1

jJ.t; x/j
X

`2J.t; x/
�`t ; if J.t; x/ ¤ ;

0; if J.t; x/ D ;;
(8.29)

where

J.t; x/ WD fk 2 f1; : : : ; N g W Xk
t D xg:
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This definition differs from the analogous one given for pedestrians, cf. (5.27), since
the concept of test agent is not invoked here. In fact, in the present context agents
are not assumed to interact with each other.

Once the velocity field is defined at both scales, it is possible to define

v WD �vm C .1 � �/vM ; � 2 Œ0; 1�: (8.30)

Since

0 D @u

@t
Cr � .uv/

D @u

@t
Cr �

 

u�
1

jJ j
X

`2J
�`t

!

Cr �
�

u.1 � �/�ru

2u

�

D @u

@t
C �r �

 

u
1

jJ j
X

`2J
�`t

!

� 1
2
.1 � �/4u;

the fully-coupled dynamics is

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

dXk
t D �dW k

t C .1 � �/
�ru.t; Xk

t /

2u.t; Xk
t /

dt; t > 0; k D 1; : : : ; N (8.31a)

@u

@t
C �r �

 

u
1

jJ j
X

`2J
�`t

!

� 1
2
.1 � �/4u D 0; t > 0; x 2 R

d (8.31b)

with initial conditions Xk
0 D 0, k D 1; : : : ; N , and u.0; x/ D ı0. The

system (8.31a)–(8.31b) couples a system of mixed ordinary-stochastic differential
equations with a deterministic-stochastic advection-diffusion partial differential
equation.

8.4.2 Numerical Approximation of the Coupled Equation

In the following we restrict the discussion to the dimension one (d D 1). The heat
equation (8.25) can be solved analytically and we have

u.t; x/ D 1p
2
t

e�
x2

2t ; vM.t; x/ WD �ru.t; x/

2u.t; x/
D x

2t
: (8.32)

Let us introduce a structured space-time grid with spatial cell size 	x and a time
step	t like in Sect. 5.5. We denote space cells byEi D

�
xi � 	x

2
; xi C 	x

2

�
, where
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xi D i	x, and by 
in the approximate value of a generic function 
.t; x/ at x D xi
and t D tn D n	t .

The numerical approximation of (8.31a)–(8.31b) is extremely hard. Let us
approach it step by step. First of all, let us discretize (8.25) and (8.27). Equa-
tion (8.25) can be easily discretized by means of a first-order centered finite
difference scheme

uinC1 D uin C
1

2

	t

	x2

�
uiC1n � 2uin C ui�1n

�
; n 2 N; i 2 Z: (8.33)

Equation (8.27) instead, although it is formally equivalent to (8.25), must be
carefully approximated by a scheme which respects the directionality of the vector
field vM (assumed to be given). To this end, let us define the flux

f ŒvM � WD uvM :

The one-dimensional version of the scheme (5.37) reads as

uinC1 D uin C
	t

	x

�
�LinŒf �CGi�

n Œf �CGiC
n Œf �

�
; n 2 N; i 2 Z; (8.34)

where the L(oss) term is given by

LinŒf � WD jf i
n j; (8.35)

and the G(ain) terms are given by

Gi�
n Œf � WD

(
f i�1
n ; if .vM/i�1n � 0
0; if .vM/i�1n < 0;

GiC
n Œf � WD

( �f iC1
n ; if .vM/iC1n � 0

0; if .vM/iC1n > 0:
(8.36)

Note that scheme (8.34) is nothing else than the classical upwind scheme for
space-dependent velocities with nonconstant sign. To avoid to manage the initial
datum ı0 at the discrete level, we set the initial time for the simulation at t0 D
1
2

and, consequently, the new initial datum at u.t; x0/ D 1p
2
t0

exp� x2

2t0
. The

computational domain is set at Œ�10; 10�.
Figure 8.5 shows the initial datum u.t0; x/, the numerical solution uparab of (8.25)

obtained by (8.33) at time t D 5, the exact macroscopic velocity field vM D �ru
2u D

x
2t

in Œ�10; 10�	Œt0; 3�, and the numerical solution uiperb of (8.27) obtained by (8.34)
at time t D 5. It can be seen that the approximation of uiperb is slightly worse than
that of uparab, due to the different features of the numerical scheme.

Regarding the microscopic part, the Ito processes satisfying (8.24) can be
approximated by using the weak Euler scheme

Xk
nC1 D Xk

n C	W k
n ; k D 1; : : : ; N (8.37)
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Fig. 8.5 (a) Initial datum u.t0; x/; (b) Function uparab.t D 5; x/; (c) The velocity field vM D
�ru

2u D x
2t

; (d) Function uiperb.t D 5; x/

where the random increments	W k
n ’s are given by

	W k
n D ˙

p
	t; Prob.W k

n D ˙
p
	t/ D 1

2
: (8.38)

The discrete velocity �kn of the Brownian motion can be computed a posteriori as
	W k

n

	t
and then it is possible to define the discrete microscopic velocity as (cf. (8.29))

.vm/
i
n WD

8
ˆ̂
<

ˆ̂
:

1

jJ in j
X

`2J in

	W `
n

	t
; if J in ¤ ;

0; if J in D ;;
(8.39)
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Fig. 8.6 Trajectories of N D 1 particles (first row) and N D 100 particles (second row) in the
plane x-t for x 2 Œ�10; 10� and t 2 Œt0; 10�. Red circles are the initial positions of the particles
(a,d) � D 0 (macroscopic velocity is leading). (b,e) � D 0:3 (coupled velocity). (c,f) � D 1 (pure
Brownian motion)

where

J in WD fk 2 f1; : : : ; N g W Xk
n 2 Ei g:

At time t D t0 D 1
2
, we assume the microscopic agents fXk

t0
gNkD1 to be randomly

distributed in fx 2 R W jxj < rg with r D 3
2
.

A preliminary coupling of the microscopic and macroscopic scale can be obtained
by assuming that the solution u to the heat equation (8.25) is known (see (8.32)), and
then solving the equation for Xk in (8.31a), discretized as follows:

Xk
nC1 D Xk

n C �	W k
n C .1 � �/

Xk
n

2tn
	t; k D 1; : : : ; N: (8.40)

Figure 8.6 shows the solution of (8.40) for � D 0, � D 0:3 and � D 1 (N D 1 and
N D 100 agents). Interestingly, the coupling works fine and the Brownian motion
is regularized as expected, still preserving the overall statistical properties of the
dynamics.
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The numerical scheme for the fully-coupled system (8.31a)–(8.31b) can be
obtained by means of the ingredients introduced above, ending up with the following
discrete explicit system

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
:

Xk
nC1 D Xk

n C �	W k
n C .1 � �/	t

� �1
2ujn

� 
ujC1n � uj�1n

2	x

!

(8.41a)

uinC1 D uin C �
	t

	x

� �LinŒf �CGi�
n Œf �CGiC

n Œf �
�C

.1 � �/1
2

	t

	x2

�
uiC1n � 2uin C ui�1n

�
(8.41b)

where L and G’s are defined in (8.35) and (8.36), respectively, j is defined, for any
n and k, as the unique index such that Xk

n 2 Ej (we are assuming here a zeroth
order interpolation for the values of u not sitting on grid nodes), and f D f Œvm� is
defined, at grid nodes, as

f i
n D uin.vm/

i
n; n 2 N; i 2 Z;

with vm as in (8.39).
The scheme (8.41a)–(8.41b) raises severe numerical issues. Three of them are

in order: (i) Even if the initial time for the simulation is shifted to t0 D 1
2
> 0,

the function u is very close to 0 (close to or below the machine precision) in some
portion of the domain, see Fig. 8.5a. This makes the division by u in (8.41a) to be a
source of errors; (ii) The microscopic dynamics is very irregular and, consequently,
the function u becomes in short time quite irregular. This makes it almost impossible
to compute ru in (8.41a) with a certain precision; (iii) Limiting our attention to
the advection part of (8.41b), the hyperbolic CFL condition takes the nonstandard
implicit form

	t max
n;i
j.vm.	t//inj � 	x:

Indeed, the discrete microscopic velocity field .vm/in depends on the choice of 	t ,
cf. (8.39). In particular, we have

E



max
n;i
j.vm.	t//inj

�
D E


 j	W j
	t

�
D 1p

	t
:

Finally, the CFL condition can be explicitly written as

p
	t � 	x or 	t � 	x2:

Figure 8.7 shows the result of the coupled dynamics (8.31a)–(8.31b) for u at
t D 5 with � D 1 and N D 100. Here the Brownian motion leads the dynamics,
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Fig. 8.8 Solution of the system (8.31a)–(8.31b) with � D 0:3 and N D 100. (a) u.t D 5; x/;
(b) Trajectories Xk

t of the particles in the plane x-t for x 2 Œ�10; 10� and t 2 Œt0; 5�

making the macroscopic solution u strongly irregular. It is interesting to note that
the microscopic dynamics is able to “stretch” the Gaussian in the correct way. This
is perfectly visible comparing Figs. 8.5d and 8.7: The support of the two solutions
is approximately the same, i.e. Œ�7; 7�.

Figure 8.8 shows the result of the coupled dynamics (8.31a)–(8.31b) for u and
Xk at t D 5 with � D 0:3 and N D 100. Here both scales contribute to the overall
dynamics, making the result quite unpredictable. We observe a clustering effect in
the microscopic particles, likely due to numerical issues rather than actual effects of
scale interactions.

Similar results can be obtained analogously in two dimensions. Figure 8.9 shows
the two-dimensional version of the simulation described in Fig. 8.6d–f.
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Fig. 8.9 Trajectories of N D 100 particles in the plane x-y. Red circles are the initial positions
of the particles. (a) � D 0 (macroscopic velocity is leading). (b) � D 0:1 (coupled velocity).
(c) � D 1 (pure Brownian motion)

8.5 Conclusions

The example discussed above shows that the multiscale coupling described in
Chap. 5 can be understood in a quite broad sense. Although the numerics is still
far from being able to catch the full potentiality of the approach, new scenarios for
a number of applications in different fields are disclosed. For example, the same
ideas presented in this section can be adapted to describe, in a multiscale fashion,
the wave-particle duality, replacing the heat equation by the Schrödinger equation.

8.6 Bibliographical Notes

Section 8.1 The results about second order time-evolving measures appear for the
first time in this book.

Sections 8.2, 8.3 The results about multidimensional and space-time-dependent
multiscale coupling can be found, in less detail, in Cristiani et al. [49].

Section 8.4 The coupling of the heat equation with the Brownian motion was first
presented in Cristiani [44].



Appendix A
Basics of Measure and Probability Theory

Abstract This appendix collects sequentially some basic material about measure,
probability, and transport theory. The goal is to provide readers with quick-access
references to the more technical contents of the book, especially those used in
Chaps. 6 and 7. On the other hand, the presented topics are by no means covered
in an exhaustive manner: The appendix does indeed assume prior knowledge of real
and functional analysis. Hints to more complete texts, at both undergraduate and
graduate or research levels, are given in the final bibliographical notes.

A.1 Measurable Spaces, Measures, and Measurable
Functions

A.1.1 Sets and Operations with Sets

Let us consider an abstract set U , i.e., a set with no special structure (either
topological or metrical). We denote by u a generic element ofU and we write u 2 U
to mean that u belongs to U , u 62 U to mean that u does not belong to U .

A subset of U is another set whose elements belong also to U . We write A 
 U
to mean that A is a subset of U :

A 
 U , u 2 A) u 2 U; 8 u 2 A:

Notice that A may coincide with the whole U . If it does not then A is said to be a
proper subset of U . When we want to stress that A is a proper subset of U we write
A � U or even A ¨ U .

Two subsets A, B of U are equal if and only if A 
 B and B 
 A. In this case
we write A D B .

We denote by ; the empty set, i.e., the set with no elements. The empty set is a
subset of any other set.

E. Cristiani et al., Multiscale Modeling of Pedestrian Dynamics, MS&A 12,
DOI 10.1007/978-3-319-06620-2,
© Springer International Publishing Switzerland 2014
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UUU
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B
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a b c

Fig. A.1 Venn diagrams illustrating the basic set operations introduced in Definition A.1:
(a) complement; (b) intersection; (c) union

The following logical operations can be defined among sets (cf. Fig. A.1).

Definition A.1 (Operations with sets). Let A, B be two subsets of U . We define
the following basic operations:

• Complement: The complement of A (in U ) is a set, denoted by Ac , whose
elements are all and only those u 2 U which do not belong to A:

Ac WD fu 2 U W u 62 Ag:

Notice that .Ac/c D A.
• Intersection: The intersection of A and B is a set, denoted by A \ B , whose

elements are all and only those u 2 U which belong to both A and B:

A \ B WD fu 2 U W u 2 A and u 2 Bg:

If A \ B D ; then A and B are said to be disjoint. Notice that A \ Ac D ;,
A \ ; D ;, and A \ U D A for all A 
 U .

• Union: The union of A and B is a set, denoted by A[B , whose elements are all
and only those u 2 U which belong to at least one between A and B:

A[ B WD fu 2 U W u 2 A or u 2 Bg:

Notice that A[ Ac D U , A[ ; D A, and A [ U D U for all A 
 U .

A.1.2 � -Algebras and Measurable Spaces

We now consider families of subsets ofU . In particular, we denote by M any of such
families. The interesting ones are those stable with respect to the logical operations
introduced in Definition A.1, therefore we give the following definition:

Definition A.2 (�-algebra). A family M of subsets of U is said to be a �-algebra
if the following three properties hold true:
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(i) The empty set and the whole set U belong to the family; That is:

;; U 2M:

(ii) The family is stable (or “closed”) with respect to complementation; That is,
whenever A is an element of the family also Ac is:

A 2M ) Ac 2M:

(iii) The family is stable with respect to countable unions; That is, if fAi gi2N is
a countable collection of subsets of U , each belonging to M, then also their
union belongs to M:

fAi gi2N 
M )
1[

iD1
Ai 2M:

Remark A.1. From Definition A.2 it follows that a �-algebra is stable also with
respect to:

• Finite unions, indeed if fAigNiD1 
 M with N < 1 then it is sufficient to take
in Definition A.2(iii) ANC1 D ANC2 D � � � D ; (which belong to M owing to
Definition A.2(i)) to see that [NiD1Ai 2M as well.

• Finite and countable intersections, as it can be immediately checked by recalling
De Morgan’s laws .\iAi /c D [iAci and .[iA/c D \iAci , which hold for both
finite and countable unions and intersections.

Example A.1 (of �-algebras).

(i) For every abstract set U , the family M D f;; U g is the minimal possible
�-algebra of subsets of U (sometimes it is called the trivial �-algebra).

(ii) For A 
 U , the family M D f;; A; Ac; U g is called the �-algebra generated
by A. To stress this fact, it is often denoted by the symbol �.A/ in place of M.
It is the smallest �-algebra of subsets of U containing A, namely if M0 is any
other �-algebra such that A 2M0 then �.A/ 
M0.

(iii) If U is a topological space, i.e., such that open sets can be defined among its
subsets, then the �-algebra generated by the open sets is called the Borel �-
algebra and is usually denoted by B.U /. Any element of B.U / is also called
a Borel set. It is worth stressing that B.U / does not contain only open subsets
of U : For instance, all closed subsets of U are Borel sets as well, as they are
complements of open sets.

Definition A.3 (Measurable space). Each element of a �-algebra M is called a
measurable set. The pair .U; M/ is called a measurable space.
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A.1.3 Measures

Definition A.4 (Measure). A real-valued positive measure � on the measurable
space .U; M/ is a mapping � W M ! RC which satisfies the following condition
only, called �-additivity:

• For every countable sequence fAigi2N of elements of M pairwise disjoint, i.e.,
such that Ai \Aj D ; for all i ¤ j , it results:

�

 1[

iD1
Ai

!

D
1X

iD1
�.Ai/: (A.1)

Definition A.5 (Measure space). The triple .U; M; �/ is called a measure space.

Remark A.2. Notice that the definition above is consistent, in fact Ai 2M for all i
implies, owing to Definition A.2, [1iD1Ai 2 M. Therefore this union still belongs
to the domain of the measure �, hence the left-hand side of (A.1) is well defined.

Example A.2 (of measures).

(i) Let U D R
d and M D B.Rd /. In the “physical” measurable space

.Rd ; B.Rd //with the usual topology coming from the Euclidean metric j�j, the
d -dimensional Lebesgue measure, here denoted by L d , is the measure which
assigns to every Borel set of the form A D .a1; b1/ 	 .a2; b2/ 	 � � � 	 .ad ; bd /
the number

L d .A/ D
dY

iD1
.bi � ai /

called the volume of A.
(ii) In an abstract measurable space .U; M/, the Dirac measure concentrated on a

given point u0 2 U is the measure, usually denoted by ıu0 , such that:

ıu0 .A/ D
(
1 if u0 2 A
0 otherwise;

8A 2M: (A.2)

When U is a topological space and one considers in it the Borel �-algebra B.U /
(cf. Example A.1(iii)), a measure � on .U; B.U // is said to be inner regular if
for all B 2 B.U / the value �.B/ can be approximated with arbitrary precision by
�.K/, where K is a compact subset of B . That is:

8 � > 0; 9K 
 B compact W j�.B/ � �.K/j < �
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or, equivalently,

�.B/ D sup
K�B

compact

�.K/:

In addition, � is said to be locally finite if every point u of U has a neighborhood
of finite measure. Finally, � is said to be a Radon measure if it is inner regular and
locally finite.

Conversely, in an abstract (i.e., not necessarily topological) measurable space
.U; M/, a measure � is said to be �-finite if there exists a sequence fAi gi2N 
 M
such that U D [i2NAi and �.Ai / < C1 each i . Notice that this does not imply
that U has in turn finite measure. When �.U / < C1, � is said to be finite.

Remark A.3. Concerning the finiteness of a measure, we notice that if there exists
A 2 M such that �.A/ < C1 then it invariably results �.;/ D 0. In fact, let us
consider the sequence fAigi2N 
M where A1 D A and A2 D A3 D � � � D ;; Then
owing to (A.1) it results �.A/ D �.A/CP1iD2 �.;/, i.e. (using that �.A/ is finite,
hence it can be dropped from both sides),

P1
iD2 �.;/ D 0. Since �.;/ � 0, the

only possibility is indeed �.;/ D 0.
This also shows that �-additivity implies the additivity of � for finite unions. In

fact, if fAigNiD1 
M with N < 1 are pairwise disjoint then it is sufficient to take
ANC1 D ANC2 D � � � D ; in (A.1) to see that �.[NiD1Ai / D

PN
iD1 �.Ai/.

Remark A.4 (Sum of measures). Generally, usual algebraic operations cannot be
performed with measures. For instance, two measures �1; �2 on .U; M/ cannot be
multiplied, since the mathematical object �1 � �2 is not defined (although it is of
course defined the number �1.A/�2.A/ once a measurable set A has been fixed, but
this amounts to ordinary multiplication of real numbers).

However, measures can be added and multiplied by a scalar. In practice, linear
combinations of measures are allowed and the result is still a measure in the sense
of Definition A.4. In particular:

• � D �1 C �2 is the measure on .U; M/ defined as

�.A/ WD �1.A/C �2.A/; 8A 2M:

• For a 2 R, � D a�1 is the measure on .U; M/ defined as

�.A/ WD a�1.A/; 8A 2M:

When we say that � D �1 C �2 and � D a�1 are measures in the sense of
Definition A.4 we mean that the mapping A 7! �.A/ from M to RC is �-additive.
In contrast, the mappingA 7! �1.A/�2.A/ can of course be defined from M to RC
but it is not �-additive, hence it does not define a measure.
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A.1.4 Measurable Functions

Now we go from the abstract measure space .U; M; �/ to the “physical” measur-
able space .Rd ; B.Rd //, d � 1, with functions.

Definition A.6 (Measurable function). A function f WU !R
d is said to be

measurable if:

f �1.B/ 2M; 8B 2 B.Rd /:

We recall that f �1.B/ is the subset of U , called the inverse image (or pre-image)
of B through f , defined as:

f �1.B/ WD fu 2 U W f .u/ 2 Bg:

Roughly speaking, measurable functions are those functions which operate back
and forth between the �-algebras M and B.Rd /. However, the precise definition
makes use of the inverse images.

Theorem A.1 (Operations with measurable functions).

(i) Algebraic operations. If f , g are two measurable functions from .U; M/ to
.Rd ; B.Rd // then also f ˙ g, fg are measurable. If g.u/ ¤ 0 for all u 2 U
then f=g is measurable as well.

(ii) Composition. If f W .U; M/ ! .Rd ; B.Rd //, g W .Rd ; B.Rd // !
.Rd ; B.Rd // are measurable then so is g ı f W .U; M/! .Rd ; B.Rd //.

(iii) Sequences. If ffi gi2N is a sequence of measurable functions from .U; M/ to
.Rd ; B.Rd // then the following functions are measurable as well:

sup
i2N

fi .u/; inf
i2Nfi .u/; lim sup

i!1
fi .u/; lim inf

i!1 fi .u/:

In addition, if limi!1 fi .u/ exists for all u 2 U then it is measurable as well.

Theorem A.2 (Measurable functions transport measures). Let f W U ! R
d

be a measurable function from the measure space .U; M; �/ into the measurable
space .Rd ; B.Rd //. Define the mapping � W B.Rd /! RC by setting:

�.B/ WD �.f �1.B//; 8B 2 B.Rd /: (A.3)

Then � is a measure (in the sense of Definition A.4) on the measurable space
.Rd ; B.Rd //.

Proof. Proving the theorem is essentially a matter of checking that � is �-additive,
cf. (A.1). Indeed, its non-negativity follows straightforwardly from the analogous
property of �.
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Let fBi gi2N 
 B.Rd / a pairwise disjoint collection of Borel sets. The key point
is that inverse images commute with set operations, thus e.g., f �1.[i2NBi/ D
[i2Nf �1.Bi /, and moreover that since the Bi ’s are pairwise disjoint so are their
inverse images through f . Then we write:

�

 1[

iD1
Bi

!

D �
 

f �1
 1[

iD1
Bi

!!

(by definition of �, cf. (A.3))

D �
 1[

iD1
f �1.Bi /

!

D
1X

iD1
�.f �1.Bi // (because � is �-additive)

D
1X

iD1
�.Bi / (again by definition of �)

and we are done.

Notice that in (A.3) the right-hand side is well defined because f is measurable
(hence f �1.B/ belongs to the domain M of �).

The measure � is called the image of � through f . It is often indicated by the
notation

� D f #�;

which is termed the push forward of � (through f ).

A.2 Integration with Respect to an Abstract Measure

For the sake of notational simplicity, in this section we restrict ourselves to real-
valued functions f W U ! R, i.e., we set d D 1. However, the main ideas that
we will discuss work in the same way also in higher dimensions up to reasoning
componentwise.

We begin by defining the integral on the measure space .U; M; �/ of a very
special class of functions.

A (real-valued) non-negative simple function s is a measurable function s W U !
RC which takes only a finite number, say n, of values. It can be represented as:

s.u/ D
nX

iD1
si�Ai .u/; (A.4)
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Fig. A.2 Example of a simple function s W R ! R taking n D 5 values in the interval Œ0; 1�,
particularly: s1 D 0:5 in A1 D Œ0; 0:1/, s2 D 2 in A2 D Œ0:1; 0:3/, s3 D 1 in A3 D Œ0:3; 0:6/,
s4 D 0 in A4 D Œ0:6; 0:7/, and s5 D 0:2 in A5 D Œ0:7; 1�. Solid vertical lines are jump-type
discontinuities plotted for visual reference

where (cf. Fig. A.2):

• si 2 RC is the i -th value taken by s.
• Ai D fu 2 U W s.u/ D si g is the subset of U on which s takes the value si .

In other words Ai D s�1.fsi g/, thereforeAi 2M all i because s is measurable1.
• �Ai is the characteristic function of the set Ai , such that �Ai .u/ D 1 if u 2 Ai ,
�Ai .u/ D 0 if u 62 Ai .

Definition A.7 (Integral of simple functions). The integral of s on U with respect
to the measure � is the real number:

Z

U

s d� WD
nX

iD1
si�.Ai /: (A.5)

This stuff is the building block for constructing the integral of more general
functions. As a further intermediate step, we consider now a function f which need
not be simple but is still non-negative.

Definition A.8 (Integral of non-negative functions). The integral of a non-
negative measurable function f W U ! RC on U with respect to the measure
� is the real number (or possiblyC1):

1Actually, the function s defined by (A.4) is measurable if and only if Ai 2M for all i D 1; : : : ; n.
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Z

U

f d� WD sup

�Z

U

s d� W s simple and 0 � s � f
	
:

In practice, one approximates f from below by simple functions and then takes the
supremum of their integrals computed according to (A.5).

Remark A.5 (Simple functions are dense). In view of the procedure of approxima-
tion by simple functions implied by Definition A.8, it is useful to know that simple
functions are dense in the set of summable functions.

We anticipate that summable functions are those for which
R
U jf j d� < C1

(notice that jf j is a non-negative measurable function for every measurable f ,
hence its integral is constructed according to Definition A.8, see also Definition A.9
and Remark A.6 below).

In particular, the statement above holds in the sense of the pointwise convergence:
If f is measurable then there exists a nondecreasing sequence fsigi2N of simple
functions such that:

• 0 � s1.u/ � s2.u/ � � � � � f .u/ for all u 2 U .
• si .u/! f .u/ when i !1, u 2 U .

One such sequence can be given explicitly. For all i define the measurable sets:

Ai;k WD f �1
�
.k2�i ; .k C 1/2�i /� .k D 0; 1; : : : ; 22i � 1/;

Bi WD f �1
�
.2i ; C1�� ;

then let:

si .u/ WD
22i�1X

kD0
k2�i�Ai;k .u/C 2i�Bi .u/; (A.6)

see Fig. A.3.
Notice that we allow for functions possibly taking the value C1 (cf. the

definition of the set Bi ).

Finally, in order to deal with a generic measurable function f W U ! R taking
both positive and negative values we introduce its positive part f C and negative
part f �, defined respectively as:

f C WD maxf0; f g; f � WD maxf�f; 0g:

Notice that both f C and f � are measurable and non-negative, regardless of the sign
of f . Moreover, it is not difficult to see that the following relationship holds true:

f D f C � f �: (A.7)



230 A Basics of Measure and Probability Theory

0

0.125

0.25

0.375

0.5

0.625

.75

0.875

1

0 1 2 3 4 5
x

f
s1
s2
s3

Fig. A.3 Plot of the first three terms of the sequence of simple functions (A.6) which approximate
f .x/ D 1� .x4 � x2 C 1/e�x2 (solid black line) in the interval Œ0; 5�

Thanks to Definition A.8 we are able to define the integrals on U of f C, f � with
respect to �. Hence we use (A.7) in the obvious way to define the integral of f
as well.

Definition A.9 (Integral of generic measurable functions). The integral of a
measurable function f W U ! R on U with respect to the measure � is the real
number (or possibly1):

Z

U

f d� WD
Z

U

f C d��
Z

U

f � d�

provided at least one of the two terms at the right-hand side is finite so as to avoid
the indeterminate form1�1.

If
R
U
f d� exists then f is said to be integrable on U . If, in addition,R

U jf j d� < C1 then f is said to be summable on U .

Remark A.6. Since jf j � 0, its integral on U with respect to � can be constructed
directly from Definition A.8. Alternatively, noting that jf j D f C C f �, it
results also:

Z

U

jf j d� WD
Z

U

f C d�C
Z

U

f � d�:
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If � is positive then

ˇ
ˇ̌
ˇ

Z

U

f d�

ˇ
ˇ̌
ˇ �

Z

U

jf j d�:

Theorem A.3 (Linearity of the integral). Both mappings:

f 7!
Z

U

f d�; � 7!
Z

U

f d�

are linear, i.e.,

Z

U

.af C bg/ d� D a
Z

U

f d�C b
Z

U

g d�

Z

U

f d.a�1 C b�2/ D a
Z

U

f d�1 C b
Z

U

f d�2

for all a; b 2 R, all measurable functions f; g, and all measures �; �1; �2.

The notion of integral set forth above is usually referred to as the Lebesgue
integral, as opposed to the Riemann integral normally learned in undergraduate
Calculus courses. The advantage of the former over the latter is that it offers more
straightforward ways of interchanging the operations of limit and integration. This
is extremely useful when we have a sequence of functions ffigi2N, for each of which
we have some information about the integral on U , and we want to infer something
about the integral of their limit (which we might even not know explicitly).

When both Riemann and Lebesgue integrals exist for a function f they coincide.
However, there are functions which are not Riemann-integrable but are Lebesgue-
integrable. One of such functions (actually, a very classical example) is the
Dirichlet’s function f W R! f0; 1g defined as:

f .x/ D
(
1 if x 2 Q

0 otherwise;

where Q is the set of rational numbers. Its Riemann integral on R with respect to
the Lebesgue measure L does not exist while its Lebesgue integral is zero because
L .Q/ D 0 (compute it using (A.5)).

Theorem A.4 (Convergence theorems for integrals). Let the fi ’s be measurable
for all i D 1; 2; : : :

(i) Fatou’s Lemma.

Z

U

�
lim inf
i!1 fi

�
d� � lim inf

i!1

Z

U

fi d�:
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(ii) Beppo Levi’s Monotone Convergence Theorem. If:

(a) 0 � f1.u/ � f2.u/ � � � � � 1 for every u 2 U .
(b) There exists f W U ! RC such that fi .u/! f .u/ pointwise as i !1,

then f is measurable as well and:

Z

U

f d� D lim
i!1

Z

U

fi d�:

(iii) Lebesgue’s Dominated Convergence Theorem. If:

(a) There exists f W U ! RC such that fi .u/! f .u/ pointwise as i !1.
(b) There exists a summable function g W U ! RC such that jfi .u/j � g.u/

for every i D 1; 2; : : : and every u 2 U ,

then f is summable and:

lim
i!1

Z

U

jf � fi j d� D 0 )
Z

U

f d� D lim
i!1

Z

U

fi d�:

Another important property of the integral is that it behaves well with respect to
the transport of measures as defined in (A.3).

Theorem A.5 (Integrals depend only on the image measure). Let f W U ! R

be a measurable function from .U; M; �/ to .R; B.R/; �/, where � D f #�. Let
g W R! R be another measurable function from .R; B.R// into itself. Then

Z

U

g ı f d� D
Z

R

g d.f #�/ D
Z

R

g d�

provided integrals exist (finite or infinite).

A.3 Decomposition of a Measure

Let �, � be two positive measures on a measurable space .U; M/.

Definition A.10 (Support of a measure). We say that � is concentrated on a
measurable set E 2M if we have:

�.A/ D �.A\ E/; 8A 2M:

If U is a topological space then the smallest of such E which is also closed is called
the support of �, denoted supp.�/.
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Definition A.11 (Absolutely continuous and singular measures). We say that �
is absolutely continuous with respect to �, written

� � �;

if �.A/ D 0 whenever �.A/ D 0 (A 2M).
Conversely, we say that �, � are (mutually) singular, written

� ? �;

if they are concentrated on two disjoint measurable sets.

The interest in the concepts of absolute continuity and mutual singularity is that
they are at the basis of a representation theorem of a measure once another measure
has been fixed.

Theorem A.6. Let �, � be as above plus �-finite.

(i) Lebesgue’s Decomposition Theorem. There exists a unique pair of measures
�a, �s on .U; M/ such that:

� D �a C �s with �a � �; �s ? �:

If � is positive and finite then so are �a, �s .
(ii) Radon-Nikodym’s Theorem. There exists a unique non-negative function f ,

integrable on U with respect to �, such that:

�a.A/ D
Z

A

f d�; 8A 2M: (A.8)

The function f is called the density of �a with respect to �.

Formula (A.8) is often also written as d�a D f d� or even:

f D d�a

d�
:

Inspired by this writing, some call f the Radon-Nikodym derivative of �a with
respect to �. Owing to Radon-Nikodym Theorem, to say that a measure � is
absolutely continuous with respect to another measure � means equivalently that
d� D f d� (i.e., � � �a, �s D 0).

Concerning the singular part �s , it is possible to prove that it has invariably the
following form:

�s D �pp
s C �C

s ;
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where �pp
s is the pure point part and �C

s is the Cantor part. In particular, �pp
s is a

discrete measure, i.e., a measure concentrated on at most a countable set. IfU D R
d

and � is the Lebesgue measure then �pp
s is a collection of point masses, that is it can

be written as (cf. (A.2)):

�pp
s D

X

i

˛i ıxi ;

where ˛i 2 R, xi 2 R
d each i and the sum can be either finite or countably infinite.

A.4 Probabilities

Abstract measure theory and probability theory speak, to a large extent, of similar
issues but often with different terminologies. Each terminology is rooted in the
history of the corresponding theory, and nowadays it would be impossible to unify
them de jure. Here we simply try to establish the necessary linguistic parallelisms
between the two theories.

A.4.1 Events, Operations with Events, and � -Algebras

In the language of probability, the abstract set U is denoted by ˝ , its points by !,
and it is called the state space. It is the set of all possible outcomes of a random
experiment. Every subset A of˝ is said to be an event, i.e., a property which can be
observed to hold or not to hold after the random experiment is performed.

Given two events A; B 
 ˝ , the usual operations with sets take the following
meanings:

• Complementation: Ac is said to be the event contrary to A.
• Intersection: A\ B is said to be the event A and B .
• Union: A[ B is said to be the event A or B .

Moreover,˝ is also called the sure event and the empty set ; the impossible event.
If two events A; B are such that A\ B D ; then they are said to be incompatible.

Example A.3 (Tossing of two coins). When tossing one coin the state space
of the possible outcomes is ˝ D fh; tg (“h” standing for head and “t”
for tail). When tossing two coins, the new state space is the set of pairs
˝ D f.h; h/; .h; t/; .t; h/; .t; t/g. The event A D “The output of the first toss
is head” can be identified with the subset A D f.h; h/; .h; t/g. The event B D“The
output of the second toss is tail” is instead the set B D f.h; t/; .t; t/g. The event
“The first toss gives head and the second one tail” is the set A \ B D f.h; t/g. The
two events A, B are not incompatible.
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The notions of �-algebra and of measurable space are the same as those seen in
Sect. A.1.2. The only difference is that in probability theory one speaks, of course,
of families of events rather than of subsets and usually denotes them by F rather
than by M. In addition, once a �-algebra F has been introduced, it is customary to
understand the events as the measurable sets only, i.e., the elements of F .

A.4.2 Probability Measures

A probability measure on a measurable space .˝; F / is a positive measure P W
F ! RC like in Definition A.4 (up to the change of notation from � to P ) with
the additional property that:

P.˝/ D 1:

It follows that 0 � P.A/ � 1 for all A 2 F , i.e., the probability of any event is
a number between 0 and 1 (this can be seen by considering that ˝ D A [ Ac and
that A, Ac are disjoint, hence P.˝/ D P.A/C P.Ac/ but P.Ac/ � 0 because P
is positive).

Any probability measure is thus a finite measure. In particular, this implies
P.;/ D 0, i.e., the probability of the impossible event is zero.

The triple .˝; F ; P / is called a probability space (i.e., the probabilistic
counterpart of a generic measure space).

A.4.3 Random Variables

Random variables are nothing but measurable functions in the probabilistic lan-
guage. Another difference is that they are usually denoted by X rather than by f .

Therefore, after fixing the “physical” measurable space .Rd ; B.Rd // as the
destination space, a random variable X W ˝ ! R

d from the measurable space
.˝; F / into .Rd ; B.Rd // is a mapping such that:

X�1.B/ 2 F ; 8B 2 B.Rd /:

Notice that a random variable is not a “variable” in the classical analytical sense
but indeed a function!

Random variables are mostly used for transporting probability measures. In
particular, Theorem A.2 still holds with the function f replaced by X and the
measure space .U; M; �/ by the probability space .˝; F ; P /. In addition, it is
immediate to check that the image measure � D X#P is a probability on R

d , i.e.,
�.Rd / D 1. Such a � is called the law of the random variable X .
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If B is any Borel set of Rd , one may ask what is the probability that a random
variableX takes values in B . This actually corresponds to the event A D f! 2 ˝ W
X.!/ 2 Bg D X�1.B/ 2 F , hence, owing to the push forward # linking P and �,
P.A/ D �.B/. Therefore, if the law of X is known, one can compute probabilities
of events involvingX directly on the space of the values taken by X .

A.4.4 Integrals of Random Variables

Since random variables are ultimately measurable functions, it is possible to
introduce for them, too, the notion of (Lebesgue) integral on˝ , which is constructed
by following slavishly the procedure reviewed in Sect. A.2.

In this context we want to pause in particular over the consequences of Theo-
rem A.5, which we restate here with the new “probabilistic” notation for the sake
of convenience. Again, we confine our attention to scalar random variables, i.e.,
we set d D 1 for simplicity. In higher dimensions it is basically sufficient to argue
componentwise.

Theorem A.7 (cf. Theorem A.5). Let X W ˝ ! R be a random variable from
.˝; F ; P / to .R; B.R/; �/, where � D X#P . Let g W R ! R be another
measurable function from .R; B.R// into itself. Then

Z

˝

g ıX dP D
Z

R

g d.X#P/ D
Z

R

g d� (A.9)

provided integrals exist (finite or infinite).

This theorem says that integrals on˝ can be computed as integrals on R, i.e., on
the space where X takes its values. All one needs to know is again the law of X ,
namely the measure �. Notice that it is even not necessary to know the expression of
X ! For this reason, probabilistic models are usually constructed on the “physical”
space by characterizing random variables through their laws. The state space˝ , the
original probabilityP , and the random variableX itself are ignored in practice, they
remain only at a conceptual level for grounding the theory.

If in (A.9) we take g.x/ D x we get:

E ŒX� WD
Z

˝

X.!/ dP.!/ D
Z

R

x d�.x/:

This number is called the expectation (or expected value, or average) of X . It is the
first statistic moment of X .

Taking g.x/ D x2 we get instead the second statistic moment of X :

E
�
X2

 WD

Z

˝

X2.!/ dP.!/ D
Z

R

x2 d�.x/
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and

VarŒX� WD E
�
X2

 � E ŒX�2

is the variance of X . With a few algebraic manipulations it can also be written as

VarŒX� D E
�
.X � E ŒX�/2



;

whence it can be seen that it is a non-negative quantity.
In general, the p-th statistical moment of X is:

E ŒXp� WD
Z

˝

Xp.!/ dP.!/ D
Z

R

xp d�.x/:

When looking at the last integral, without reference to any random variable, this
number is also called the p-th moment of the measure �.

A.5 Product Spaces, Marginals, and Disintegration
of a Measure

In this section we temporarily resume the notation of real measure theory for the
sake of generality. Indeed it is a mainly technical fact that the measures involved are
probabilities, the most important point being actually that they are finite. Everything
can be restated for finite measures as well, up to a proper rescaling.

Let .U; MU /, .V; MV / be two measurable spaces, U , V being abstract sets.
The Cartesian product of U and V , denoted U 	 V , is the set of ordered pairs of
elements of U and V :

U 	 V WD f.u; v/ W u 2 U; v 2 V g:

We equip it with the �-algebra M WD �.MU ˝MV /, i.e., the one generated by
Cartesian products of measurable subsets of U and V , to form the new measurable
space .U 	 V; M/. On the latter we introduce then a probability �, which induces
the following two probabilities on .U; MU /, .V; MV /, respectively:

Q�U .A/ WD �.A 	 V /; 8A 2MU

Q�V .B/ WD �.U 	 B/; 8B 2MV :
(A.10)

They are called the marginals of � on U , V , respectively.
Another way to obtain marginals is by pushing � forward properly. If


U W U 	 V ! U; 
U .u; v/ WD u;


V W U 	 V ! V; 
V .u; v/ WD v;
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v
U × {v}

U

V

U × V

µ

µ(·|v)^

µV~

Fig. A.4 Sketch of the main
actors of Theorem A.8

are the canonical projections of U 	 V onto U and V , respectively, then Q�U , Q�V
are also recovered as:

Q�U D 
U #�; Q�V D 
V #�:

When dealing with integrals over a product space, such as e.g.,

“

U�V
f .u; v/ d�.u; v/; (A.11)

it is quite natural to ask whether they can be computed iteratively, i.e., by integrating
first on U (with v fixed) and then finally on V (or vice versa), by means of suitable
probabilities “living” on .U; MU / and .V; MV /. The answer is affirmative but the
two probabilities to be used are in general not the marginals of �. Actually one of
them can be a marginal while the other one is normally not the other marginal.
The precise statement is provided by the following theorem (keep at hand also
Fig. A.4):

Theorem A.8 (Disintegration of a measure). In the setting above, consider the
probability � on .U 	 V; M/ and its marginal Q�V D 
V #� on .V; MV /. For Q�V -
almost every v 2 V (i.e., up to possibly some points v forming a subset of V of
zero Q�V measure) there exists a unique probability measure O�.�jv/ on .U 	 V; M/,
parameterized by v, such that:

• For every A 2 M the mapping v 7! O�.Ajv/ is measurable from .V; MV / to
.R; B.R//.

• The probability O�.�jv/ is actually concentrated on the fiber 
�1V .fvg/ D U 	 fvg,
that is O�.Ajv/ D O�.A \ .U 	 fvg/jv/ for every A 2M.
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• For every Borel-measurable function f W .U 	 V; M/ ! .R; B.R// the
integral (A.11) can be computed iteratively first on the fiber U 	fvg with respect
to O�.�jv/, keeping v fixed, and then on V with respect to Q�V :

“

U�V
f .u; v/ d�.u; v/ D

Z

V

�Z

U�fvg
f .u; v/ d O�.ujv/

�
d Q�V .v/: (A.12)

It is worth noticing that each of the fibers 
�1V .fvg/ D U 	fvg can be canonically
identified with U itself, thus O�.�jv/ can be identified with a probability on .U; MU /

for ( Q�V -almost) every v 2 V . Consequently, (A.12) can also be read in the more
intuitive form:

“

U�V
f .u; v/ d�.u; v/ D

Z

V

�Z

U

f .u; v/ d O�.ujv/
�
d Q�V .v/:

The disintegration of � in O�.�jv/ and Q�V is often written as

�.du dv/ D O�.du jv/˝ Q�V .dv/;

which recalls that the measure � of the infinitesimal volume du dv centered at .u; v/
in the product spaceU	V is evaluated by multiplying the measure O�.�jv/ of du � U
along the v-fiber U 	 fvg and the marginal measure Q�V of dv � V . This idea is
indeed at the basis of a well-known formula for computing the area or volume of
subsets of R2, R3, respectively, as shown by the next example.

Example A.4. If, for A 2M, we take f .u; v/ D �A.u; v/, the indicator function of
A, then from (A.12) we discover:

�.A/ D
Z

V

O�.Ajv/ d Q�V .v/ D
Z

V

O�.A \ .U 	 fvg/jv/ d Q�V .v/: (A.13)

Let U D V D Œ0; 1� � R and � D L 2 (the Lebesgue measure on Œ0; 1�	 Œ0; 1�,
which we incidentally notice is there a probability). Then it can be seen that Q�V D
L (the Lebesgue measure on Œ0; 1�, in turn a probability) and moreover, using the
more customary letter y in place of v for the variable of the vertical axis in the plane,
that O�.�jy/ D L .� \ .Œ0; 1� 	 fyg//. Hence (A.13) becomes:

L 2.A/ D
Z 1

0

L .A\ .Œ0; 1� 	 fyg// dy;

namely the formula for computing the area of a two-dimensional set by integrating
parallel to the horizontal axis (see Fig. A.5) normally learned in basic Calculus.
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1

1

0

y

A

[0, 1] × {y}
A ([0, 1] × {y})

Fig. A.5 The area of A can be conceptually computed by “summing” the lengths of the segments
obtained by cutting A with straight lines parallel to the horizontal axis

Conditional Probability

We now rephrase the discussion above in a markedly probabilistic spirit and draw
some noticeable consequences.

Given two random variables X; Y W .˝; F ; P / ! .Rd ; B.Rd //, we construct
the further random variable:

Z WD .X; Y / W ˝ ! R
d 	 R

d

! 7! .X.!/; Y.!//;

which takes values in the product space Rd 	Rd (endowed with the Borel �-algebra
B.Rd 	 R

d /), and we denote by � WD Z#P its law on .Rd 	 R
d ; B.Rd 	 R

d //.
First we claim that the marginals of � on .Rd ; B.Rd // are the laws of X , Y ,

respectively. To see this, let us consider for instance the marginal with respect to the
second component of Z, which we call Q�Y (the reasoning for the first component is
completely analogous). Then for all A 2 B.Rd / we have:

Q�Y .A/ D �.Rd 	 A/ (by (A.10))

D P.f! 2 ˝ W Z.!/ 2 R
d 	 Ag/ (by definition of law of Z)

D P.f! 2 ˝WX.!/ 2 R
d g \f! 2 ˝ W Y.!/ 2 Ag/ (because ZD.X; Y /)

D P.˝ \ f! 2 ˝ W Y.!/ 2 Ag/ (because X is Rd -valued)

D P.Y 2 A/:
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Second, by applying Theorem A.8 to � we discover that there exists a probability
measure O�.�jy/ on .Rd 	Rd ; B.Rd 	 R

d //, but actually concentrated on R
d 	fyg,

such that:

�.dx dy/ D O�.dx jy/˝ Q�Y .dy/; (A.14)

hence:

“

Rd�Rd
f .x; y/ d�.x; y/ D

Z

Rd

�Z

Rd

f .x; y/ d O�.xjy/
�
d Q�Y .y/ (A.15)

for all Borel-measurable function f W Rd 	 R
d ! R.

The measure O�.�jy/ is called the conditional law of X given Y (or the law of X
conditioned to Y ). The quantity:

E ŒX jY � WD
Z

Rd

x d O�.xjy/

is a function of y called the conditional expectation of X given Y . Remarkably:

E ŒE ŒX jY �� D
Z

Rd

E ŒX jY � d Q�Y .y/ (because E ŒX jY � is a function of Y , cf. (A.9))

D
Z

Rd

�Z

Rd

x d O�.xjy/
�
d Q�Y .y/ (by definition of E ŒX jY �)

D
“

Rd�Rd
x d�.x; y/ (by (A.15))

D
Z

Rd

�Z

Rd

x d O�.yjx/
�
d Q�X.x/ (by (A.14) interchangingX and Y )

D
Z

Rd

x O�.Rd jx/ d Q�X.x/

D
Z

Rd

x d Q�X.x/ D E ŒX� (because O�.�jx/ is a probability):

A.6 Wasserstein Distance in Probability Spaces

Starting from this section we will mostly forget about the abstract probabil-
ity space .˝; F ; P / and work directly with the “physical” probability space
.Rd ; B.Rd /; �/ without even invoking explicitly the random variable X linking
them.
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For p � 1, let Pp.R
d / be the space of probability measures � on R

d with finite
p-th moment, i.e.:

Z

Rd

jxjp d�.x/ < C1:

Notice that Pp.R
d / is not a vector space, as for example the sum of two probability

measures �1; �2 is not a probability measure (indeed .�1 C �2/.Rd / D �1.R
d / C

�2.R
d / D 2 ¤ 1).

Nevertheless, it is possible to introduce a distance in Pp.R
d /, which measures

“how far” two probabilities are from each other.

Definition A.12 (Wasserstein distance). The p-th Wasserstein distance in
Pp.R

d / is the mappingWp WPp.R
d / 	Pp.R

d /! RC defined as:

Wp .�1; �2/ WD
�

inf
�2� .�1; �2/

“

Rd�Rd
jy � xjp d�.x; y/

�1=p
; (A.16)

where� .�1; �2/ is the set of all probability measures on the measurable space .Rd	
R
d ; B.Rd 	 R

d // whose marginals are �1, �2.

In formula (A.16) of Definition A.12, any measure � 2 � .�1; �2/, i.e., with
marginals �1, �2, is also called a transference plan between �1 and �2. The reason
is that the double integral in (A.16) expresses the global cost for transferring the
mass distribution carried by �1 into the mass distribution carried by �2. Specifically,
the elementary cost needed for transferring the infinitesimal mass d�1.x/ in
x to the infinitesimal mass d�2.y/ in y is expressed in terms of (the p-th power
of) the distance jy � xj between the origin and destination points. Aside from the
p-th power, the Wasserstein distanceWp is thus the optimal (i.e., minimum) of such
costs.

For p D 1, the first Wasserstein distance in P1.R
d / is:

W1 .�1; �2/ D inf
�2� .�1; �2/

“

Rd�Rd
jy � xj d�.x; y/:

Owing to the Kantorovich-Rubinstein’s duality, an alternative sometimes more
practical expression of W1 is:

W1 .�1; �2/ D sup
'2Lip1.Rd /

Z

Rd

' d.�2 � �1/

where:

Lip1.R
d / WD f' W Rd ! R W ' is Lipschitz continuous with Lip.'/ � 1g:



A.7 Measures as Distributions 243

The importance of Wasserstein distances is that they provide the spaces Pp.R
d /

with a useful functional structure. Indeed:

Theorem A.9. For any p � 1 the Wasserstein distance Wp introduced in Defini-
tion A.12 is a metric on Pp.R

d /, i.e., it satisfies the axioms of a metric.
In addition, Pp.R

d / endowed with Wp is a separable Banach space.

A.7 Measures as Distributions

An alternative approach to finite positive measures (hence, in particular, to prob-
ability measures) is from the side of distributions. Combined with the one pre-
sented in the previous sections, this point of view is a powerful tool for tackling
measure-valued differential equations and their proper weak formulation. Within
this perspective, we set our forthcoming discussion in the “physical” measurable
space .Rd ; B.Rd //.

In Functional Analysis, distributions are defined as the elements of the dual space
of C1c .Rd /, where:

C1c .Rd / WD f
 W Rd ! R W 
 2 C1.Rd / with compact supportg:

Functions belonging to C1c .Rd / are called test functions. The space of distributions
is instead usually denoted by D 0.Rd /. This notation comes from the fact that the
space C1c .Rd / is sometimes also denoted by D.Rd /, thus D 0 would stand for
its dual.

Any distribution ˚ 2 D 0.Rd / is therefore a bounded linear functional on
C1c .Rd /. Its action on a test function 
 is denoted by2 h˚; 
i, called a duality
form. Hence we have:

• h˚; a
 C b i D ah˚; 
i C bh˚;  i for all a; b 2 R and 
;  2 C1c .Rd /.
• jh˚; 
ij � C k
k1 for all 
 2 C1c .Rd /, where C is a constant independent of

 and k
k1 WD maxx2Rd j
.x/j is the1-norm of 
 in C1c .Rd /.

In addition, we say that a distribution (and, more in general, a linear functional) ˚
is positive if


.x/ � 0 8 x 2 R
d ) h˚; 
i � 0:

When ˚ is a finite positive measure, say �, on .Rd ; B.Rd // the duality pairing
between � and a test function 
 is defined to be:

h�; 
i WD
Z

Rd


 d�: (A.17)

2Other notations also frequently used are ˚.
/ and ˚
.
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The mapping 
 7! R
Rd

 d� is indeed a bounded linear functional on C1c .Rd /.

Linearity is obvious because the integral is linear with respect to the integrand,
whereas boundedness follows from the finiteness of �: jh�; 
ij � �.Rd /k
k1.

Formula (A.17) is remarkable because it is the building block of an important
theorem, which states that virtually “all” positive linear functionals can actually be
represented by integrals with respect to a positive measure:

Theorem A.10 (Riesz’s Representation Theorem). Let Cc.Rd / be the space of
continuous functions with compact support in R

d and let ˚ be a positive linear
functional on it. Then there exist a �-algebra M, which contains B.Rd /, and a
unique positive measure � on .Rd ; M/ such that:

h˚; 
i D
Z

Rd


 d�; 8
 2 Cc.Rd /:

Notice that Cc.Rd / contains C1c .Rd / as a proper subset, hence not all positive
distributions in D 0.Rd / are actually measures (because the dual of Cc.Rd /, for
which Riesz’s Theorem holds, is smaller than D 0.Rd /). However, those positive
distributions whose action is well defined also on continuous (albeit not necessarily
infinitely differentiable) functions compactly supported in R

d are indeed measures
(but Riesz’s Theorem does not say how to obtain in practice � out of the knowledge
of ˚).

Example A.5 (Dirac delta). In Example A.2 we introduced the Dirac measure
defined by (A.2). In view of (A.17), it makes sense to ask whether we can read
it also as a distribution and, in such a case, how we can define its action on test
functions. For this, we essentially need to be able to compute integrals with respect
to the Dirac measure.

We begin by fixing a point x0 2 R
d and denoting by ıx0 the Dirac measure

concentrated in x0. Given a simple function s like in (A.4) (with U D R
d ), we

can assume that the Ai ’s form a pairwise disjoint partition of Rd (up to possibly
including among them a “big” set where s is zero), so that there is exactly one of
them, say Ai0 , which contains x0. Then, according to (A.5), the integral of s on R

d

with respect to ıx0 is:

Z

Rd

s dıx0 D
nX

iD1
si ıx0.Ai / D si0 D s.x0/;

considering that ıx0.Ai / D 0 for all i ¤ i0 and ıx0.Ai0/ D 1.
Next, let 
 2 C1c .Rd / be a non-negative test function. We construct

R
Rd

 dıx0

on the basis of Definition A.8:
Z

Rd


 dıx0 D supfs.x0/ W s simple and 0 � s � 
g: (A.18)



A.8 Bibliographical Notes 245

Notice that s.x0/ � 
.x0/. However, simple functions being dense among
summable functions3 in terms of pointwise convergence (cf. Remark A.5), for every
� > 0 there exists s� , among the simple functions which approximate 
 at the right-
hand side of (A.18), such that j
.x0/ � s�.x0/j < �. Therefore the sought supremum
cannot be strictly less than 
.x0/ and we conclude:

Z

Rd


 dıx0 D 
.x0/; 8
 2 C1c .Rd /; 
 � 0:

Finally, for a generic 
 2 C1c .Rd / we use Definition A.9 with positive and
negative parts to discover:

Z

Rd


 dıx0 D
Z

Rd


C dıx0 �
Z

Rd


� dıx0 D 
C.x0/� 
�.x0/ D 
.x0/:

Ultimately, we can read the Dirac measure as a distribution according to (A.17),
its action on test functions being defined as:

hıx0; 
i WD 
.x0/; 8
 2 C1c .Rd /:

The distribution ıx0 is often called the Dirac delta.

A.8 Bibliographical Notes

Sections A.1–A.3 and A.7 A very good reference for real (and complex) analysis
issues related to measure theory is the book by Rudin [154].

Section A.4 A nice introduction to probability theory soundly grounded on
measure theory can be found in the textbook by Jacod and Protter [105].

Sections A.5 and A.6 A technical reference for more general statements of the
disintegration theorem (Theorem A.8), as well as for advanced topics in optimal
transportation, is the book by Ambrosio et al. [6], see also the books by
Villani [166, 167]. Notice that the Wasserstein metric measures the distance
between probability measures or, in a broader sense, between finite measures
carrying the same total mass. Nevertheless, in applications one can face problems
involving measures with different total mass (especially if one cannot rely on
the principle of conservation of mass). A technique to extend the notion of
Wasserstein distance also to these cases is proposed by Piccoli and Rossi [142].

3Notice that any test function 
 is certainly summable with respect to the Dirac measure (although
at this stage we still do not know how its integral is defined) because it is bounded. In fact:R
Rd
j
j dıx0 
 k
k1ıx0 .R

d / D k
k1 < C1.



Appendix B
Pseudo-code for the Multiscale Algorithm

Abstract This appendix reports a pseudo-code for the multiscale algorithm
described in Chap. 5 and used to produce all of the simulations presented in Chaps. 2
and 8. The pseudo-code is structured in a main body, which keeps track of the
temporal iterations, plus a few additional functions called by the main body, which
perform specific tasks at each time iteration like computing the microscopic and
macroscopic components of the total transport velocity and updating the numerical
solution. This pseudo-code is intended as a support for the logical organization of a
real machine-executable code to be implemented in one’s own favorite programming
language.

B.1 Preliminaries

We present here a pseudo-code for the basic multiscale algorithm described in
Chap. 5. Functions called from the main code are denoted by F1 , F2 , F3 .
To avoid cumbersome notations, only the one-dimensional version of the code is
presented, except for the function F3 , which is presented also in two dimensions.
The code is not intended for optimized usage in terms of CPU time or memory
allocation.

For any a 2 R, and i; j 2 Z, we define

aC WD
(
a if a � 0
0 if a < 0;

a� WD
(
�a if a � 0
0 if a > 0;

ıij WD
(
1 if i D j
0 if i ¤ j:

We use the following indexes:

E. Cristiani et al., Multiscale Modeling of Pedestrian Dynamics, MS&A 12,
DOI 10.1007/978-3-319-06620-2,
© Springer International Publishing Switzerland 2014
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k for microscopic pedestrians
i (and j , in 2D) for spatial cells
r (and s, in 2D) for auxiliary indexes for spatial cells
n for time steps

For the reader’s convenience, we recall here the expressions of the approximate
multiscale velocity at a generic point x and time tn:

vŒ Q�n�.x/ D vd.x/C �
X

kD1; :::;N
Xkn¤x

f .jXk
n � xj/g.˛xXkn /

Xk
n � x
jXk

n � xj
„ ƒ‚ …

WD'.x/

C

.1 � �/�
X

j2Zd
�nj

Z

Ej

f .jy � xj/g.˛xy/
y � x
jy � xj dy

„ ƒ‚ …
WD .x/

(B.1)

B.2 The Pseudo-code

Grid definition
Spatial domain˝ ,
final time T ,
space step 	x,
time step 	t ,
number of space steps Nx,
number of time steps Nt ,
number of pedestriansNp ,
vector of space nodes x D .x1; : : : ; xNx /.
In 2D, define also 	y, Ny , and y in analogous manner.

Data structures
Name Type Size Symbol (from Chap. 5)
v_desired Vector Nx vd

v_micro Vector Np vmicro;k
i

v_micro_for_micro Vector Np vmicro-for-micro;k
i

v_micro_for_macro Vector Nx vmicro-for-macro;i
i

v_macro Vector Nx vmacro;i
i

v_macro_for_macro Vector Nx vmacro-for-macro;i
i

v_macro_for_micro Vector Np vmacro-for-micro;k
i

rho Matrix Nt �Nx �

X Matrix Nt �Np X
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Algorithm 1: MAIN code

Initial conditions
n 1

for k D 1; : : : ; Np do
X.n; k/ user’s choice;

end
for i D 1; : : : ; Nx do

rho.n; k/ number of agents around cell i
maximum number of agents around cell i ;

end

Computation
for n D 1; : : : ; Nt do

F1 compute v_micro_for_micro and v_micro_for_macro;

F2 compute v_macro_for_macro and v_macro_for_micro;
for i D 1; : : : ; Nx do

v_macro.i/ � v_micro_for_macro.i/C
.1 � �/� v_macro_for_macro.i/C v_desired.i/;

end
for k D 1; : : : ; Np do

find cell ik containing the position X.n; k/ of agent k;
v_micro.k/ � v_micro_for_micro.k/C

.1 � �/� v_macro_for_micro.k/C v_desired.ik/;
end
check if 	t satisfies CFL condition (5.40) (or use a variable	t);
X.nC 1; k/  X.n; k/C	t v_micro.k/;
F3 update rho;

end

Algorithm 2: Function F1

for k D 1; : : : ; Np do
v_micro_for_micro.k/  evaluate ' for x DX.n; k/;

end
for i D 1; : : : ; Nx do

v_micro_for_macro.i/  evaluate ' for x D xi ;
end
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Algorithm 3: Function F2

for i D 1; : : : ; Nx do
v_macro_for_macro.i/  evaluate  for x D xi ;

end
for k D 1; : : : ; Np do

find the cell ik containing the position X.k; n/ of the agent k;
v_macro_for_micro.k/  v_macro_for_macro.ik /;

end

Algorithm 4: function F3

for i D 2; : : : ; Nx � 1 do
rho.nC 1; i/ 0;
for r D i � 1; i; i C 1 do

D 	t v_macro.r/;
temp=DCır;i�1CD�ır;iC1 C .	x � jDj/ır;i ;
rho.nC 1; i/ rho.nC 1; i/Crho.n; r/ 1

	x
temp;

end
end

Algorithm 5: Function F3 in two dimensions

for i D 2; : : : ; Nx � 1 do
for j D 2; : : : ; Ny � 1 do

rho.nC 1; i; j / 0;
for r D i � 1; i; i C 1 do

for s D j � 1; j; j C 1 do
Dx 	t v_macro.x.r/;
Dy 	t v_macro.y.s/;
temp.x=DxCır;i�1CDx�ır;iC1 C .	x � jDxj/ır;i ;
temp.y=DyCıs;j�1CDy�ıs;jC1 C .	y � jDyj/ıs;j ;
rho.nC 1; i; j / rho.nC 1; i; j /C
rho.n; r; s/ 1

	x	y
temp.x temp.y;

end
end

end
end
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